Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorCo-Shine Wangen_US
dc.contributorTsai-Yun Linen_US
dc.contributor.advisorChang-Hsien Yangen_US
dc.contributor.authorLiang, Yu-Lingen_US
dc.identifier.citation第一章參考文獻 徐杏芬 (2003) 文心蘭花朵發育相關之MADS box基因之選殖及功能分析。 國立中興大學生物科技學研究所博士論文。 陳銘坤 (2008) 植物中調控開花時間、花器形成與老化相關基因之選殖與分析。 國立中興大學生物科技學研究所博士論文。 潘瑞娥 (2006) 植物生理學。 台灣:藝軒圖書出版社。 p33-53。 倪晉山 (1988) 離子運轉及其調節。 植物生理與分子生物學。 第二版。 北京:科學出版社。 P307-319。 Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J.M., and van Tunen, A.J. 1995. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7: 1569-1582. Apse, M.P., Aharon, G.S., Snedden, W.A. and Blumwald, E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256–1258. Bernier, G. 1988. The control of floral evocation and morphogenesis. Annu Rev. Plant Physiol. Plant Mol. Biol. 39: 175–219. Blee, E. 2002. Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7: 315-322. Blumwald, E., Aharon, G.S. and Apse, M.P. 2000 Sodium transport in plant cells. Biochim. Biophys. Acta 1465: 140–151. Blumwald, E. and Poole, R.J. 1985. Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78: 163–167. Borner, R., Kampmann1, G., Chandler1,J., Gleiner1,R., Ellen Wisman, E., Apel1, K. and Melzer1, S. 2000. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant 24: 591-599. Coen, E.S., and Meyerowitz, E.M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37. Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J., Angenent, G.C., van Tunen, A.J. 1995. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7: 1859-1868. Colombo, L., Franken, J., Alenxander, R., van der Krol, R., Wittich, P.E., Dons, H.J.M. and Angent, G.C. 1997a. Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9: 703-715. Colombo, L., van Tunen, A.J., Dons, H.J.M., and Angenent G.C. 1997b. Molecular control of flower development in Petunia hybrida. Adv. Bot. Res 26: 229-250. Dalman, F.C., Seherrer, L.C., Taylor, L.P., Akil, H. and Pratt, W.B. 1991. Localization of the 90-kDa heat shock protein-binding site wiyjin the hormone-binding domain of the glucocoriticoid receptor by peptide competition. J Biol Chem 266: 3482-3490. Dempsey, D.A., Shah, J. and Klessig, D.F. 1999. Salicyclic acid and disease resistance in plants. Crit. Rev. Plant Sci 18: 547-575. Demidchik, V., and Tester, M. 2002. Sodium fluxes through non-selective cation channels in the plasma membrane of protoplasts from Arabidopsis thaliana roots. Plant Physiol 128: 379–387. Devenport, R.J. and Tester, M. 2000. A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122: 823–834. Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., and Yanofsky, M.F. 2004.. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14: 1935-1940. Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.M., and Colombo, L. 2003.. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15: 2603-2611. Flowers, T.J., Troke, P.F. and Yeo, A.R. 1977. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol 28: 89–121. Gaxiola, R.A., Li, J., Undurrage, S., Dang, L.M., Allen, G.J., Alper, S.L. and Fink, G.R. 2001. Drought- and salt-tolerant plants result from overexpression of the AVP1 Ht-pump. Proc. Natl Acad. Sci. USA 98: 11444–11449. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499. Höfgen, R., and Willmitzer, L. 1988. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16: 9877. Honma, T., and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529. Hsu, H.F., Huang, C.H., Chou, L.T. and Yang, C.H. 2003. Ectopic expression of an orchid(Ocidium Grower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44: 783-794. Immink, R.G., Gadella, T.W., Jr, Ferrario, S., Busscher, M., and Angenent, G.C. 2002. Analysis of MADS box protein-protein interactions in living plant cells. Proc. Natl. Acad Sci USA 99: 2416-2421. Ito, T., Wellmer, F., Yu, H., Das, P., Ito, N., Alves-ferreira, M., Riechmann, J.L., and Meyerowitz, E.M. 2004. The homeotic protein AGAMOUS controls mocrosporogenesis by regulation of SPOROCYTELESS. Nature 430: 356-360. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. 1987. GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plant. EMBO J 6: 3901-3907. Komeda, Y. 2004. Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol 55: 521-35 Krizek, B.A. and Fletcher, J.C. 2005. Molecular mechanism of flower development: an armchair guid. Nature 6: 688-696. Lawton-Rauh, A.L., Alvarez-Buylla, E.R. and Purugganan, M.D. 2000. Molecular evolution of flower development. Trends Ecol Evol 15: 144-149. Mahajan, S. and Tuteja, N. 2005. Cold, salnity and drought stress: An overview. Elsevier Inc 444: 139-158. Martínez C, Pons E, Prats G, and León J. 2004. Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37: 209-217. McCue, K.F. and Hanson, A.D. 1990. Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8: 358–362. Md, I.U., Hironori, K. and Kiyoshi, T. 2008. Overexpression of a new rice vacuolar antiporter regulating protein OsARP improves salt tolerance in Tobacco. Plant Cell Physiol 49: 880-890. Ni, W., Fahrendorf, T., Balance, G.M., Lamb, C.J. and Dixon, R.A. 1996. Stress responses in alfalfa (Medicago sativa L.) XX. Transcriptional activation of phenylpropanoid pathway genes in elicitor-induced cell suspension culture. Plant Mol. Biol 30: 427-438. Norman, C., Runswick, M., Pollock, R., and Treisman, R. 1988. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55: 989-1003. Ohyama, T., Igarashi, K. and Kobayashi, H. 1994. Physiological role of the ChaA gene in sodium and calcium circulations at a high pH in Escherichia coli. J. Bacteriol 176: 4311–4315. Passmore, S., Maine, G.T., Elble, R., Christ, C., and Tye, B.K. 1988. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells. Journal of molecular biology 204: 593-606. Pastori, G.M. and Foyer, C.H. 2002. Common components, networks, and pathways of cross-tolerance to stress. The central role of ‘redox’ and abscisic acid-mediated controls. Plant Physiol 129: 460-468. Pinyopich, A,. Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E., and Tanofsky, M.F. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424, 85-88. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203. Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L., and Yanofsky, M.F. 2001. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26: 385-394. Pnueli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z., and Lifschitz, E. 1991. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1: 255-266. Qi, Y., Yamauchi, Y., Ling, J., Kawano, N., Li, D. and Tanaka, K. 2005. The submergence-induced gene OsCTP in rice (Oryza sativa L.) is similar to Escherichia coli cation transport protein ChaC. Plant Sci 168: 15–22. Raskin, I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol 43: 439-463. Riechmann, J.L., Wang, M., and Meyerowitz, E.M. (1996b). DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res 24: 3134-3141. Sablowski, R.W. and Meyerowitz, E.M. 1998. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92: 93-103. Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931-936. Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonnig, W.E., Saedler, H., and Schwarz-Sommer, Z. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9: 605-613. Theiben, G. 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Biol 4: 75-85. Theissen, G., and Saedler, H 1999. The golden decade of molecular floral development (1990-1999): A cheerful obituary. Dev Genet 25: 181-193. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U., and Saedler, H. (2000). A short history of MADS-box genes in plants. Plant Mol. Biol 42: 115-149. Theissen, G., and Saedler, H. 2001. Plant biology: Floral quartets. Nature 409: 469-471. Tzeng, T.Y., Liu, H.C., and Yang, C.H. 2004. The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. Biol. Chem 279: 10747-10755. Wagner, D., Wellmer, F., Dilks, K., William, D., Smith, M.R., Kumar, P.P., Riechmann, J.L., Greenland, A.J., and Meyerowitz, E.M. 2004. Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J 39:273-282. Yancy, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. 1982. Living with water stress: evolution of osmolyte systems. Science 217: 1214-1222. Yang, Y., Fanning, L., and Jack, T. 2003a. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33: 47-59. Yang, Y., and Jack, T. 2004. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant Mol. Biol 55: 45-59. Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E.M. 1990. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346: 35-39. Zhang, H.X. and Blumwald, E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnol 19: 765–768. Zhang, H.X., Hodson, J.N., Williams, J.P. and Blumwald, E. 2001. Engineering salt-tolerant Brassica plants: characterization of yield and seed quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl Acad. Sci. USA 98: 12832–12836. Zhu, J.K. 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol 6: 441-445. 第二章參考文獻 高乃萱 (2006) 文心蘭中B功能性MADS box基因之選殖與特性分析。國立中興大學生物科技學研究所碩士論文。 吳家偉 (2005) 文心蘭中B和E功能性之MADS box開花基因之選殖與特性分析。 國立中興大學生物科技學研究所碩士論文。 徐杏芬 (2003) 文心蘭花朵發育相關之MADS box基因之選殖及功能分析。 國立中興大學生物科技學研究所博士論文。 Kramer, E.M., Dorit, R.L. and Irish, V.F. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS box gene lineages. Genetics 149: 765-783. Liau, C.H., You, S.J., Prasad, V., Hsiao, H.H., Lu, J.C. Yang, N.S., Chan, M.T. 2003. Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep 21: 993–998 Lin YS, Chen WH, Hsieh RM, Tsai WT, Fu YM, Wu CC, Chyou MS 1995. Kanamycin sensitivity of Phalaenopsis. Rep Taiwan Sugar Res Inst 147: 11–19 Moon, Y.H., Jung, J.Y., Kang, H.G. and An, G. (1999) Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol. Boil. 40: 167-177. Nakamura, T., Fukuda, T., Nakano, M., Hasebe, M., Kameya, T. and Kanno, A. 2005. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. Orientalis (Angapanthaceae) flowers. Plant Mol. Biol 58: 435-445. Tsai, W.C., Kuoh, C.S., Chuang, M.H., Chen, W.H., and Chen, H.H. 2004. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiology 45: 831-844. Tsai, W.C., Lee, P.F., Chen, H.I., Hsiao, Y.Y., Wei, W.J., Pan, Z.J., Chuang, M.H., Kuoh, C.S., Chen, W.H., and Chen, H.H. 2005. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiology 46: 1125-1139. Xu, Y., Teo, L.L., Zhou, J., Kumar, P.P., and Yu, H. 2006. Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46: 54-68.zh_TW
dc.description.abstract文心蘭是重要的單子葉觀賞花卉,是台灣第三大之外銷切花,主銷售市場為日本,台灣主要栽培品種為「南茜」 (Oncidium Gower Ramsey),栽培幾乎遍布全省,在切花市場上極具經濟價值,但文心蘭花朵發育相關的研究卻不多,本實驗室許多學長姐多年的研究,主要在選殖及分析文心蘭花朵發育相關之MADS box基因,本研究的目的在接續前人自文心蘭中所選殖到的MADS box基因並對這些基因的功能與特性做進一步的分析。 文心蘭OMADS1基因和阿拉伯芥之 AGL6具有高度相似性,將OMADS1轉入阿拉伯芥後出現植株矮小、提早開花與花序異常的性狀。為進一步討論OMADS1 在阿拉伯芥中調控的下游基因,構築35S::OMADS1-GR 轉基因植物以DEX來誘導,再配合cDNA microarray的方式得到一些受OMADS1 促進與抑制的基因;進一步探討ㄧ個受到OMADS1促進的基因ChaCL (ChaC-like family protein)。為了解ChaCL在阿拉伯芥中表現情形與功能,分別進行promoter分析、在阿拉伯芥中大量表現ChaCL與以RNAi抑制ChaCL表現。發現ChaCL的表現位置在根部髓心、保衛細胞、葉脈、葉毛、葉毛基座細胞、莖頂分生組織、成熟花粉等部位有大量表現。在阿拉伯芥中大量表現ChaCL,35S::ChaCL轉基因植物會出現提早開花的性狀,與野生型相比提早約1~2週,其他外型性狀無顯著差異。35S::ChaCL-RNAi 阿拉伯芥轉基因植株,會出現開花時間延遲的性狀,約延遲3~5天,且營養葉數目較多。以real-time PCR相對定量分析檢測35S::ChaCL轉基因植物中GI, CO, FT, SOC1, LFY, AP3之mRNA表現量發現並無顯著差異,顯示ChaCL促進提早開花的機制可能不是光週期調控路徑。藉由分析OMADS1所調控下游基因的功能與特性,將更了解開花調控機制。(第一章) 文心蘭之OMADS5屬於B class中之PaleoAP3族基因,可轉譯出一個含227個胺基酸的蛋白質。其功能可能是在負調控唇瓣的形成。預期若在文心蘭中大量表現OMADS5,可能會抑制唇瓣的形成,使其轉型為花瓣或花萼,相反的若在文心蘭中抑制OMADS5的表現,則可能會促進唇瓣的形成,使文心蘭的花萼花瓣轉型為唇瓣。本研究已完成35S::OMADS5及35S::OMADS-RNAi的構築及文心蘭之基因轉殖,待轉殖文心蘭植株抽花序後將觀察性狀進一步印證推論。本研究另將全長及去除MADS domain之OMADS5轉殖入阿拉伯芥中大量表現,初步觀察性狀發現轉基因植株與野生型相比並無發現顯著差異。(第二章)zh_TW
dc.description.abstractOrchids are among the most important plants in the flower market in Taiwan, however little research on MADS box genes has bene reported. Therefore, the isolation of MADS box genes and further study of their roles on orchid (Oncidium Gower Ramsey) flower development is the goal for this study. Oncidium OMADS1 showed high homology to Arabidopsis MADS box gene, AGL6. Trangenic Arabidopsis ectopically expressed OMADS1 showed novel phenotypes by significantly reducing plant size, flowering extremely early, and losing inflorescence indeterminancy. To analyze the downstream genes of OMADS1 in Arabidopsis, construct contaning 35S::OMADS1 fused with glucocorticoid receptor (GR) was transformed into Arabidopsis. Genes up- or down-regulated by OMADS1 were identified by using cDNA microarray for DEX treated transgenic plants. One gene ChaCL showed up-regulated by OMADS1 were further characterized. To explore the ChacL expression in Arabidopsis, the promoter region of ChacL was fused to the reporter gene encoding β-glucuronidase (GUS) and introduced into Arabidopsis plant by Agrobacteria-mediated gene transfer. GUS activity was detected in root pith, guard cells, venation, trichome, shoot apical meristem and mature pollen of ChacL::GUS plants. Ectopic expression of ChacL caused the early flowering phenotype. By contrast, late flowering phenotype was observed in 35S::ChaCL-RNAi transgenic Arabidopsis. The expression of flowering time genes such as GI, CO, FT, SOC1 and LFY was however not affected in the 35S::ChacL transgenic plant. This data suggested that ChacL promotes flowering through a pathway independent from photoperiod flowering pathway.(Chapter 1) To investigate sepal/petal/lip formation in Oncidium Gower Ramsey, one B function paleoAP3 gene OMADS5 was characterized. The OMADS5 encodes a 227 amino acid protein. The mRNA for OMADS5 was strongly detected only in sepals and petals and was absent in the lips. This result revealed a possible negative role for OMADS5 in regulating lip formation. Ectopic expression of OMADS5 may cause the conversion of lip into sepal/petal whereas ectopic expression of OMADS5 RNAi may cause the conversion of sepal/petal into lips in Oncidium. In this study, 35S::OMADS5 and 35S::OMADS5-RNAi constructs were constructed and transformed into Oncidium for functional analysis. Further phenotypic analysis for sepal/petal/lip formation in transgenic plants should reveal the function for OMADS5 in regulating flower development in Oncidium. Furthermore, ectopic expression of either full length or truncated MADS box form of OMADS5 caused no phenotypic change in transgenic Arabidopsis.(Chapter 2)en_US
dc.description.tableofcontents中文摘要 i Abstract ii 目錄 iv 第一章 文心蘭OMADS1在阿拉伯芥中直接下游基因之功能性分析 致謝 i 中文摘要 ii Abstract iii 目錄 v 第一章 文心蘭OMADS1在阿拉伯芥中直接下游基因之功能性分析 1 中文摘要 1 Abstract 2 壹 、前言 3 貳 、材料與方法 10 参 、結果 19 一、經由microarray 的實驗數據找尋阿拉伯芥中受OMADS1調控的直接下游基因 19 二、ChaCL在阿拉伯芥中各部位的表現情形 20 三、ChaCL啟動子之分子選殖、載體構築與表現分析 20 四、35S::ChaCL與35S::ChaCL-RNAi分子選殖與載體構築 20 五、35S::ChaCL轉基因阿拉伯芥會出現早開花性狀而35S::ChaCL-RNAi轉基因阿拉伯芥出現晚開花性狀 21 六、35S::ChaCL轉基因阿拉伯芥中開花調控基因的表現情形 21 七、ChaCL於鹽逆境下表現量提升 21 八、35S::ChaCL-mGFP分子選殖、載體構築與性狀分析 21 九、UP7、LOXL與ATOPT1啟動子之分子選殖、載體構築與表現分析 21 肆 、討論 23 伍 、參考文獻 26 陸 、圖表 33 表1-1. 35S::OMADS-GR轉基因阿拉伯芥中被誘導的基因 33 表1-2. 本章所使用之聚合酶連鎖反應所使用之引子之序列 34 圖1-1.預測ChaCL、UP7、ATOPT1與LOXL在promoter區域之MADS box protein binding site 35 圖1-2. ChaCL::GUS轉基因阿拉伯芥GUS染色圖 36 圖1-3.阿拉伯芥ChaCL基因結構與在阿拉伯芥中表現情形 38 圖1-4.35S::ChaCL 與35S::ChaCL-RNAi分子轉殖與構築 39 圖1-5.35S::ChaCL 與35S::ChaCL-RNAi阿拉伯芥轉基因植株性狀分析 40 圖1-6. 35S::ChaCL 阿拉伯芥轉基因植物中ChaCL與開花調控基因表現量相對定量分析 42 圖1-7.野生型阿拉伯芥在鹽逆境中ChaCL的表現量 42 圖1-8. 35S::ChaCL-mGFP汞燈螢光顯微攝影 45 圖1-9. UP7::GUS轉基因阿拉伯芥GUS染色圖 47 圖1-10. ATOPT1::GUS與LOXL::GUS轉基因阿拉伯芥GUS染色圖 48 圖1-11. ChaCL所參與功能模式圖 49 附圖1-1. 阿拉伯芥中四條開花調控路徑中基因的交互作用 50 附圖1-2. 植物花器形成與ABC model 51 附圖1-3. 植物花器形成與ABCDE model 52 附圖1-4. MADS box 蛋白質形成四聚合體模式(quartet model) 53 附圖1-5. 植物MADS box基因MIKC-type蛋白質結構圖 54 附圖1-6. Gen-KB DNA ladder 55 附圖1-7. pGEM○R-T Easy 載體圖譜及限制酶酵素切位(載體大小3015 bp) 56 附圖1-8. pEpyon01K之圖譜。 57 附圖1-9. pEpyon12K之圖譜。 58 附圖1-10. pBlueACTi 轉接載體圖譜及限制酶酵素切位 59 附圖1-11. pBI-mGFP1載體圖譜及限制酶酵素切位 60 附圖1-12. pBI-mGFP3載體圖譜及限制酶酵素切位 61 附圖1-13. 植物偵測環境逆境訊息傳遞路徑 62 第二章 文心蘭OMADS5基因之功能性分析 63 中文摘要 63 Abstract 64 壹 、前言 65 貳 、材料與方法 67 参 、結果 70 ㄧ、文心蘭OMADS5基因序列來源 70 二、文心蘭花器中OMADS5基因之表現特性 70 三、OMADS5功能性分析之策略 70 四、35S::OMADS5、35S::OMADS5△M構築體之構築與轉殖阿拉伯芥植株之篩選 71 五、35S::OMADS5、35S::OMADS5△M之轉基因阿拉伯芥植物性狀分析 71 六、35S::OMADS5-RNAi構築體之構築與文心蘭轉基因植物之篩選 72 肆 、討論 73 一、35S::OMADS5、35S::OMADS5△M轉基因植物性狀探討 73 二、35S::OMADS5-RNAi文心蘭轉基因植物建構目的與預期性狀 74 三、35S::OMADS5文心蘭轉基因載體構築策略與預期性狀 74 伍 、參考文獻 76 陸 、圖表 78 表2-1.本論文中聚合酶連鎖反應所使用之引子之序列 78 圖2-1. 35S:OMADS5 及OMADS5△M 轉基因植物之構築與鑑定 79 圖2-2. 文心蘭35S::OMADS5-RNAi之構築 81 附圖2-1. 文心蘭OMADS5 cDNA序列與其相對應胺基酸序列 83 附圖2-2. 文心蘭OMADS5 與其他物種植物之演化樹分析 84 附圖2-3. OMADS5、OMADS8、OMADS9在文心蘭中各部位之表現量分析 85 附圖2-4. pBI-mGFP2載體圖譜及限制酶酵素切位 86 附圖2-5. pEpyon 42H載體圖譜及限制酶酵素切位 87zh_TW
dc.subjectMADS boxen_US
dc.subjectMADS box基因zh_TW
dc.title文心蘭之MADS Box基因及其下游調控基因之功能性分析zh_TW
dc.titleFunctional analysis of orchid (Oncidium Gower Ramsey) MADS box gene and the downstream genes it regulateden_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:生物科技學研究所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.