Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36227
標題: Paenibacillus sp. CCRC17245內切型B-1,3-葡萄聚醣水解酶的功能性鑑定
Functional characterization of a complex endo-B-1,3-glucanase from Paenibacillus sp. CCRC17245
作者: 鄭月媚
Cheng, Yueh-Mei
關鍵字: B-1,3-glucanase;B-1,3-葡萄聚醣水解酵素;Paenibacillus sp.;carbohydrate binding module;antifungal;Paenibacillus sp.;碳水化合物 結合區;抗真菌
出版社: 生物科技學研究所
引用: 洪堂耀。(2003)。細菌性B-1,3-葡萄聚醣水解酵素之選殖與應用。中興大學生物科技學研究所博士論文。 柯勇。(2008)。台灣經濟果樹病害彩色圖鑑。藝軒圖書出版社,台北縣。 柯勇。(2003)。作物病害與防治。藝軒圖書出版社,台北縣。 Ait-Lahsen H, Soler A, Rey M, Cruz JDL, Monte E, Llobell A. (2001). An antifungal exo-A-1,3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum. Appl. Environ. Microbiol. 67, 5833-5839 Adams DJ. (2004). Fungal cell wall chitinases and glucanases. Microbiology. 150, 2029-2035 Aguilar-Uscanga B, Francois JM. (2003). A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters appl Microbiology. 37, 268-274 Antley PP, Hazen KC. (1988). Role of yeast cell growth temperature on Candida albicans virulence in mice. Infect. Immun. 56, 2884-2890 Abou Hachem M, Nordberg Karlsson E, Bartonek-Roxa E, Raghothana S, Simpson PJ, Gilbert HJ, Willamson MP, Holst O. (2000). Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem. J. 345, 53-60 Asano T, Taki J, Yamamoto M, Aono R. (2002). Cloning and structural analysis of bglM gene coding for the fungal cell wall-lytic B-1,3-glucan-hydrolase BglM of Bacillus circulans IAM1165. Biosci. Biotechnol. Biochem. 66, 1246-1255 Boraston AB, Ghaffari M, Warren AJ, Kilburn DG. (2002). Identification and glucan-binding properties of a new carbohydrate-binding module family. Biochem. J. 361, 35-40 Bachman ES, Mcclay DR. (1996). Molecular cloning of the first metazoan B-1,3-glucanase from eggs of the urchin Strongylocentrotus purpuratus. Proc. Natl. Acad. Sci. USA. 93, 6808-6813 Corner BE, Magee PT. (1997). Candida pathogenesis: unraveling the threads of infection. Current Biology. 7, R691-R694 Castresana C, Carvalho FD, Gheysen G, Habets M, Inzé D, Montagu MV. (1990). Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia B-1,3-glucanase gene. Plant Cell. 2, 1131-1143 Cruz JDL, Pintor-Toro JA, Benítez T, Llobell A, Romero L. (1995). A novel endo-B-1,3-glucanase, BGN13.1, involved in the Mycoparasitism of Trichoderma harzianum. J. Bacteriol. 177, 6937-6945 Chen J, Zhou S, Wang Q, Chen X, Pan T, Liu H. (2000). Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in Candida albicans. Mol. Cell. Biol. 20, 8696-8708 Cutfield SM, Davies GJ, Murshudov G, Anderson BF, Moody PCE, Sullivan PA, Cutfield JF. (1999). The structure of the exo-B-1,3-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J. Mol. Biol. 294, 771-783 Clark DR, Johnson J, Chung KH, Kirkwood S. (1978). Purification, characterization, and action-pattern studies on the endo-B-1,3-D-glucanase from Rhizopus arrhizus QM1032. Carbohydrate Research. 61, 457-477 Din N, Forsythe IJ, Burtnick LD, Gilkes NR, Miller RC, Warren AJ, Kilburn DG. (1994). The cellulose-binding domain of endoglucanase A (CenA)from Cellulomonas fimi: evidence for the involvement of tryptophan residues in binding. Mol Microbio. 11, 747-755 Davies G, Henrissat. (1995). Structures and mechanisms of glycosyl hydrolases. Structure. 3, 853-859 Farkas V. (1979). Biosynthesis of cell walls of fungi. Microbiological Reviews. 43, 117-144 Fradin C, Poulain D, Jouault T. (2000). B-1,2-linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lecin galectin-3. Infect. Immun. 68, 4391-4398 Fuchs KP, Zverlov VV, Velikodvorskaya GA, Lottspeich F, Schwarz WH. (2003). Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-B-1,3-glucanase bound to the outer cell surface. Microbiology. 149, 1021-1031 Ferrer P. (2006). Revisiting the Cellulosimicrobium cellulans yeast-lytic B-1,3-glucanase toolbox: A review. Microbial cell Factories. 5, 1-8 Fibriansah G, Masuda S, Koizumi N, Nakamura S, Kumasaka T. (2007). The 1.3Ao crystal structure of a novel endo-B-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp. strain F96. Proteins 69, 683-690 Gantner BN, Simmons RM, Underhill DM. (2005). Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. The EMBO J. 24, 1277-1286 Giribaldi M, Perugini I, Sauvage FX, Schubert A. (2007). Analysis of protein changes during grape berry ripening by 2-DE and MALDI-TOF. Proteomics. 7, 3154-3170 Gueguen Y, Voorhorst WGB, Oost JVD, Vos WMD. (1997). Molecular and biochemical characterization of an endo-B-1,3-glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 272, 31258-31264 Hazen BW, Hazen KC. (1988). Dynamic expression of cell surface hydrophobicity during initial yeast cell growth and before germ tube formation of Candida albicans. Infect. Immun. 56, 2521-2525 Huecas S, Villalba M, Rodríguez R. (2001). Ole e 9, a major olive pollen allergen is a 1,3-B-glucanase. J. Biol. Chem. 276, 27959-27966 Hahn M, Pons J, Planas A, Querol E, Heinemann U. (1995). Crystal structure of Bacillus licheniformis 1,3-1,4-D-glucan 4-glucanohydrolase at 1.8A0resolution. FEBS. 374, 221-224 Hahn M, Olsen O, Politz O, Borriss R, Heinemann U. (1995). Crystal structure and site-directed mutagenesis of Bacillus nacerans endo-1,3-1,4-B-glucanase. J. Biol. Chem. 270, 3081-3088 Hildén L, Väljamäe P, Johansson G. (2005). Surface character of pulp fibres studied using endoglucanases. J. Biotechnology. 118, 386-397 Harpster MH, Brummell DA, Dunsmuir P. (1998). Expression analysis of a ripening-specific, auxin-repressed endo-B-1,4-glucanase gene in strawberry. Plant Physiol. 118, 1307-1316 Huecas S, Villalba M, Rodríguez R. (2001). Ole e 9, a major olive pollen allergen is a B-1,3-glucanase. J. Biol. Chem. 276, 27959-27966 Kang Y, Carlson R, Tharpe W, Schell M. (1998). Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl. Environ. Microbiol. 64, 3939-3947 Kimoto H, Kusaoke H, Yamamoto I, Fujii Y, Onodera T, Taketo A. (2002). Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. J. Biol. Chem. 277, 14695-14702 Kikuchi T, Shibuya H, Jones JT. (2005). Molecular and biochemical characterization of an endo-B-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. Biochem. J. 389, 117-125 Kapteyn JC, Hoyer LL, Hecht JE, Müller WH, Andel A, Verkleij AJ, Makarow M, Ende HVD, Klis FM. (2000). The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol. Microbiol. 35, 601-611 Kim AS, Garni RM, Henry-Stanley MJ, Bendel CM, Erlandsen SL, Wells CL. (2003). Hypoxia and extraintestinal dissemination of Candida albicans yeast forms. Shock. 19, 257-262 Kovalchuk SN, Sundukova EV, Kusaykin MI, Guzev KV, Anastiuk SD, Likhatskaya GN, Trifonov EV, Nurminski EA, Kozhemyako VB, Zvyagintseva TN, Rasskazov VA. (2006). Purificatin, cDNA cloning and homology modeling of endo-B-1,3-D-glucanase from scallop Mizuhopecten yessoensis. Comparative Biochemistry Physiology. 143, 473-485 Liop-Tous I, Domínguez-Puigjaner E, Palomer X, Vendrell M. (1999). Characterization of two divergent endo-B-1,4-glucanase cDNA cloning highly expressed in the nonclimacteric strawberry fruit. Plant Physiology. 119, 1415-1421 Mcquilken MP, Gemmell J. (2004). Enzyme production by the mycoparasite Verticillium biguttatum against Rhizoctonia solani. Mycopathologia. 157, 201-205 Masuda S, endo K., Koizumi N, Hayami T, Fukazawa T, Yatsunami R, Fukui T, Nakamura S. (2006). Molecular identification of a novel B-1,3-glucanase from alkaliphilic Nocardiopsis sp. strain F96. Extremophiles. 10, 251-255 Malet C, Jiménez-Barbero J, Bernabé M, Brosa C, Planas A. (1993). Stereochemical course and structure of the products of the enzymic action of endo-1,3-1,4-B-D-glucan 4-glucanohydrolase from Bacillus licheniformis. Biochem. J. 296, 753-758 Monteiro VN, Ulhoa CJ. (2006). Biochemical characterization of a B-1,3-glucanase from Trichoderma koningii induced by cell wall of Rhizoctonia solani. Current Microbiology. 52, 92-96 Myc A, Vanhecke T, Landers JJ, Hamouda T, Baker JR. (2001). The fungicidal activity of novel nanoemulsion (X8W60PC) against clinically important yeast and filamentous fungi. Mycopathologia. 155, 195-201 Nakamura CV, Ishida K, Faccin LC, Dias Filho BP, Garcia Cortez DA, Rozental S, Souza WE, Ueda-Nakamura T. (2004). In vitro activity of essential oil from Ocimum gratissimum L. against four Candida species. Research Microbiology. 155, 579-586 Nagano N, Porter CT, Thornton JM. (2001). The (BA)8 glycosidases: sequence and structure analyses suggest distant evolutionary relationships. Protein Engineering. 14, 845-855 Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES. (1990). Chitinase, B-1,3-glucanase, osmotin, and extension are expressed in tobacco explants during flower formation. Plant Cell. 2, 673-684 Netea MG, Gow NAR, Munro CA, Bates S, Collins C, Ferwerda G, Hobson RP, Bertram G, Hughes HB, Jansen T, Jacobs L, Buurman ET, Gijzen K, Williams DL, Torensma R, Mckinnon A, Maccallum DM, Odds FC, Meer JVD, Brown Ajp, Kullberg BJ. (2006). Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and toll-like receptors. J. Clin. Investigation. 116, 1642-1650 Oard S, Rush MC, Oard JH. (2004). Characterization of antimicrobial peptides against a US strain of the rice pathogen Rhizoctonia solani. J. Appl. Microbiol. 97, 169-180 Obregón P, Martín R, Sanz A, Castresana C. (2001). Activation of defence-related genes during senescence: a correlation between gene expression and cellular damage. Plant Mol Biol. 46, 67-77 Palomares O, Villalba M, Quiralte J, Polo F, Rodríguez R. (2005). 1,3-B-glucanases as candidates in latex-pollen-vegetable food cross-reactivity. Clin. Exp. Allergy. 35, 345-351 Paumbo JD, Sullivan RF, Kobayashi DY. (2003). Molecular characterization and expression in Escherichia coli of three B-1,3-glucanase gene from Lysobacter enzymogenes strain N4-7. J. Bacteriol. 185, 4362-4370 Peumans WJ, Barre A, Derycke V, Rougé P, Zhang W, May GD, Delcour JA, Leuven FV, Damme MV. (2000). Purification, characterization and structural analysis of an abundant B-1,3-glucanase from banana fruit. Eur. J. Biochem. 267, 1188-1195 Ray TL, Payne CD. (1988). Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect. Immun. 56, 1942-1949 Rigden DJ, Jedrzejas MJ, De Mello LV. (2003). Identification and analysis of catalytic TIM barrel domains in seven further glycoside hydrolase families. FEBS letters. 544, 103-111 Receveur-Bréchot V, Czjzek M.; Barre A, Roussel A, Peumans WJ, Van Damme EJM, Rougé P. (2006). Crystal structure at 1.45Ao resolution of the major allergen endo-B-1,3-glucanase of banana as a molecular basis for the latex-fruit syndrome. Proteins. 63, 235-242 Rowe HC, Kliebenstein DJ. (2007). Elevated genetic variation within virulence-associated Botrytis cinerea polygalacturonase loci. Molecular Plant-Microbe Interactions. 20, 1126-1137 Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I, Izui S, Liu FT. (2003). Critical role of galectin-3 in phagocytosis by macrophages. J. Clin. Invest. 112, 389-397 Sun L, Gurnon JR, Adams BJ, Graves MV, Van Etten JL. (2000). Characterization of a B-1,3-glucanase encoded by Chlorella virus PBCV-1. Virology. 276, 27-36 Selitrennikoff CP. (2001). Antifungal proteins. Appl. Environ. Microbiol. 67, 2883-2894 Singleton DR, Masuoka J, Hazen KC. (2001). Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J. Bacteriol. 183, 3582-3588 Sommer P, Bormann C, Götz F. (1997). Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus. Appl. Environ. Microbiol. 63, 3553-3560 Trainotti L, Spolaore S, Ferrarese L, Casadoro G. (1997). Characterization of ppEG1, a member of a multigene family which encodes endo-B-1,4-glucanase in peach. Plant Mol. Biol. 34, 791-802 Thrane C, Nielsen MN, Olsson SS. (2001). Pseudomonas fluorescens DR54 reduces sclerotia formation, biomass development, and disease incidence of Rhizoctonia solani causing damping-off in sugar beet. Microb Ecol. 42, 438-445 Tomme P, Tilbeurgh HV, Pettersson G, Damme JV, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M. (1988). Studies of the cellulolytic system of Trichoderma reesei QM 9414. Eur. J. Biochem. 170, 575-581 Tokatli F, Tari C, Unluturk SM, Baysal NG. (2009). Modeling of polygalacturonase enzyme activity and biomass production by Aspergillus sojae ATCC 20235. J. Ind. Microbiol. Biotechnol. Vázquez-Garcidueñas S, Leal-Morales CA, Herrera-Estrella A. (1998). Analysis of the B-1,3-glucanolytic system of the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 64, 1442-1446 Vellicce GR, Díaz Ricci JC, Hernández L, Castagnaro AP. (2006). Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Research. 15, 57-68 Vecchiarelli A, Cenci e, Puliti M, Blasi E, Puccetti P, Cassone A, Bistoni F. (1989). Protective immunity induced by low-virulence Candida albicans: cytokine production in the development of the anti-infectious state. Cell Immunol. 124, 334-344 Wu HS, Raza W, Fan JQ, Sun YG, Bao W, Liu DY, Hung QW, Mao ZS, Shen QR, Miao WG. (2008). Antibiotic effect of exogenously applied salicylic acid on in vitro soilborne pathogen, Fusarium oxysporum f. sp. niveum. Chemosphere. 74, 45-50 Watanabe T, Kasahara N, Aida K, Tanaka H. (1992). Three N-terminal domains of B-1,3-glucanase A1 are involved in binding to insoluble B-1,3-glucan. J. Bacteriol. 174, 186-190 Yamamoto Y, Klein TW, Friedman H. (1997). Involvement of mannose receptor in cytokine interleukin-1B (IL-1B), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1B (MIP-1B), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages. Infect. Immun. 65, 1077-1082 Yamamoto M., Ezure T, Watanabe T, Tanaka H, Aono R. (1998). C-terminal domain of B-1,3-glucanase H in Bacillus circulans IAM1165 has a role in binding to insoluble B-1,3-glucan. FEBS Letters. 433, 41-43 Zverlov VV, Volkov LY, Velikodvorskaya GA, Schwarz WH. (2001). The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana: differences in B-glucan binding within family CBM4. Microbiology. 147, 621-629 Aida K, Okada T, Kasahara N, Nikaidou N, Tanaka H, Watanabe T. (1995). Comparative studies of B-1,3-glucanase A1 and B of Bacillus circulans WL-12: purification and enzymatic properties. J Ferment Bioeng. 80, 283-286 Aono R, Hammura M, Yamamoto M, Asano T. (1995). Isolation of extracellular 28- and 42-kilodalton B-1,3-glucanase and comparison of three B-1,3-glucanase produced by Bacillus circulans IAM1165. Appl Environ Microbiol. 61, 122-129 Barth S, Huhn M, Matthey B, Klimka A, Galinski EA, Engert A. (2000). Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol. 66, 1572-1579 Boraston AB, Nurizzo D, Notenboom V, Ducros V, Rose DR, Kilburn DG, Davies GJ. (2002). Differential oligosaccharide recognition by evolutionarily-related B-1,4 and B-1,3 glucan-binding modules. J Mol Biol. 319, 1143-1156 Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 72, 248-254 Castresana C, de Carvalho F, Gheysen G, Habet, S M, Inze D, van Montagu m. (1990). Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia B-1,3-glucanase gene. Plant Cel.l 2, 1131-1143 El-Katatny MH, Gudelj M, Robra KH, Elnaghyn MA, Gübitz GM. (2001). Characterization of a chitinase and an endo-B-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol. 56, 137-143 Evans CT, Conard D. (1987). An improved method for protoplast formation and its application in the fusion of Rhodotorula rubra with Saccharomyces cerevisiae. Arch Microbiol. 148, 77-82 Engelhardt H, Peters J. (1998). Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J. Structural Biology. 124, 276-302 Ferrer P. (2006). Revisiting the Cellulosimicrobium cellulans yeast-lytic B-1,3-glucanase toolbox: a review. Microb Cell Fact. 17, 5-10 Fibriansah G, Masuda S, Koizumi N, Nakamura S, Kumasaka T. (2007). The 1.3 Ǻ crystal structure of a novel endo-B-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp. Strain F96. Proteins. 69, 683-690 Fried B, Sherma J. (1982). Thin-layer chromatography: Techniques and application. Marcel Dekker, New York Fuchs KP, Zverlov VV, Velikodvorskaya GA, Lottspeich F, Schwarz WH. (2003). Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-B-1,3-glucanase bound to the outer cell surface. Microbiology. 149, 1021-1031 Gacto M, Vicente-Soler J, Cansado J, Villa TG. (2000). Characterization of an extracellular enzyme system produced by Micromonospora chalcea with lytic activity on yeast cells. J Appl Microbiol. 88, 961-967 Gaiser OJ, Piotukh K, Ponnuswaamy MN, planas A, Borriss R, Heinemann U. (2006). Structural basis for the substrate specificity of a Bacillus 1,3-1,4-B-glucanase. J Mol Biol. 357, 1211-1225 Grenier J, Potvin C, Asselin A. (1993). Barley pathogenesis-related proteins with fungal cell wall lytic activity inhibit the growth of yeasts. Plant physiol. 103, 1277-1283 Grosch R, Scherwinski K, Lottmann J, Berg G. (2006). Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycological Research. 110, 1464-1474 Gueguen Y, Voorhorst WGB, van der Oost J, de Vos WM. (1997). Molecular and biochemical characterization of an endo-B-1,3-glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem. 272, 31258-31264 Hahn M, Olsen O, Politz O, Borriss R, Heinemann U. (1995). Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3-1,4-B-glucanase. J Biol chem. 270, 3081-3088 Henrissat B. (1991). A classification of glycosy hydrolases based on amino acid sequence similarities. Biochem J. 280, 309-316 Henrissat B, Bairoch A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 293, 781-788 Hong TY, Meng M. (2003). Biochemical characterization and antifungal activity of an endo-1,3-B-glucanase of Paenibacillus sp. Isolated from garden soil. Appl Microbiol Biotechnol. 61, 472-478 Hong Y, Proctor A, Schultz J. (2000). Acid-treated soy hull carbon structure and adsorption performance. JAOCS. 77, 785-790 Izgü F, Altinbay D, Türeli AE. (2007). In vitro susceptibilities of candida spp. To panomycocin, a novel exo-B-1,3-glucanase isolated from Pichia anomala NCYC 434. Microbiol Immunol. 51, 797-803 Jahn-Schmid B, Messner P, Unger FM, Sleytr UB, Scheiner O, Kraft D. (1996). Toward selective elicitation of TH1-controlled vaccination responses: vaccine applications of bacterial surface layer proteins. J Biotechnollogy. 44, 225-231 Johnson PE, Joshi MD, Tomme P, Kilburn DG, McIntosh LP. (1996). Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy. Biochemistry. 35, 14381-14394 Kapteyn JC, Hoyer LL, Hecht JE, Müller WH, Andel A, Verkleij Aj, Makarow M, van den Ende H, Kils FM. (2000). The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol. 35, 601-611 Kang Y, Carlson R, Tharpe W, Schell M. (1998). Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol. 64, 3939-3947 Kim PI, Chung KC. (2004). Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol Lett. 234, 177-183 Kim AS, Garni RM, Henry-Stanley MJ, Bendel CM, Erlandsen SL, Wells CL. (2003). Hypoxia and extraintestinal dissemination of Candida albicans yeast forms. Shock. 19, 257-262 Kimoto H, Kusaoke H, Yamamoto I, Fujii Y, Onodera T, Taketo A. (2002). Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. J Biol Chem. 277, 14695-14702 Kils FM. (1994). Review: cell wall assembly in yeast. Yeast. 10, 851-869 Kosugi A, Murashima K, Tamaru Y, Doi RH. (2002). Cell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE. J. Bacteriology. 184, 884-888 Kollár R, Reinhold BB, Petráková E, Yeh HJ, Ashwell G, Drgonov áJ, Kapteyn JC, Kils FM, Cabib E. (1997). Architecture of the yeast cell wall; B(1,6)-glucan interconnects mannoprotein, B(1,3)-glucan, and chitin. J Biol Chem. 272, 17762-17775 Lim HS, Kim YS, Kim SD. (1991). Pseudomonoas stutzeri YPL-l genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol. 57, 510-516 Luo G, Samaranayake LP. (2002). Candida glabrata, an emerging fungal pathogen, exhibits superior relative cell surface hydrophobicity and adhesion to denture acrylic surfaces compared with Candida albicans. APMIS. 110, 601-610 Mahasneh AM, Stewart DJ. (1980). A medium for detecting B-(1,3)-glucanase activity in bacteria. J Appl Bacteriol. 48, 457-458 Mcquilken MP, Gemmell J. (2004). Enzyme production by the mycoparasite Verticillium biguttatum against Rhizoctonia solani. Mycopathologia. 157, 201-205 Mohagheghpour N, Dawson M, Hobbs P, Judd A, Winant R, Dousman L, Waldeck N, Hokama L, Tusé D, Kos F. (1995). Glucans as immunological adjuvants. Adv Exp Med Biol. 383, 13-22 Myc A, Vanhecka T, Landers JJ, Hamouda T, Jr Baker JR. (2001). The fungicidal activity of novel nanoemulsion (X8W60PC) against clinically important yeast and filamentous fungi. Mycopathologia. 155, 195-201 Nagarajkumar M, Bhaskaran R, Velazhahan R. (2004). Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rizoctonia solani, the rice sheath blight pathogen. Microbiol Res. 159, 73-81 Nakamura CV, Ishida K, Faccin LC, Dias Filho BP, Garcia Cortez DA, Rozental S, de Souza W, Ueda-Nakamura T. (2004). In vitro activity of essential oil from Ocimum gratissimum L. against four Candida species. Research in Microbiol. 155, 579-586 Netea MG, Gow NAR, Munro CA, Bates S, Collins C, Ferwerda G, Hobson RP, Bertram G, Hughes HB, Jansen T, Jacobs L, Buurman ET, Gijzen K, Williams DL, Torensma R, Mckinnon A, Maccallum DM, Odda FC, Van der Meer JWM, Brown AJP, Kullberg BJ. (2006). Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest. 116, 1642-1650 Nishimura T, Bignon C, Allouch J, Czjzek M, Darbon H, Watanabe T, Henrissat B. (2001). Streptomyces matensis laminaripentaose hydrolase is an ‘inverting’B-1,3-glucanase. FEBS Letters. 499, 187-190 Oard S, Rush MC, Oard JH. (2004). Characterization of antimicrobial peptides against a US strain of the rice pathogen Rhizoctonia solani. J Appl Microbiol. 97, 169-180 Pretorius IS, van der Westhuisen TJ. (1991). The impact of yeast genetics and recombinant DNA technology on the wine industry: a review. Am J Enol Vitic. 12, 3-29 Planas A. (2000). Bacterial 1,3-1,4-glucanases: structure, function and protein engineering. Biochimica et Biophysica Acta. 1543, 361-382 Pum D, Sleytr UB. (1999). The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol. 17, 8-12 Ríos-Hernández M, Dos-Santos N, Silvia-Cardoso J, Bello-Gárciga JL, Pedroso M. (1994). Immunopharmacological studies of B-1,3-glucan. Arch Med Res. 25, 179-180 Ryan EM, Ward OP. (1985). Study of the effect of B-1,3-glucanase from basidiomycete QM 806 on yeast extract production. Biotechnol lett. 7, 409-412 Sakellaris H, Pemberton JM, manners JM. (1990). Gene from Cellvibrio mixtus encoding an B-1,3-endoglucanase. Appl Environ Microbiol. 56, 3204-3208 Selitrennikoff CP. (2001). Antifungal Proteins. Appl Environ Microbiol. 67, 2883-2894 Sambrook J, Fritsch EF, Maniatis T. (1989). Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor laboratory, Cold Spring Harbor, New York Sára M, Sleytr UB. (2000). S-layer Proteins. J. Bacteriology. 182, 859-868 Sleytr UB, Sára M. (1997). Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol. 15, 20-26 Sleytr UB, Messner P, Pum D, Sára M. (1999). Crystalline bacterial cell surface layers (S layers); from supramolecular cell structure to biomimetics and nantechnology. Angew. Chem. Int. Ed. 38, 1034-1054 Smits GJ, van den Ende H, Kils FM. (2001). Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology. 147, 781-794 Thrane C, Tronsmo A, Jensen DF. (1997). Endo-1,3-B-glucanase and cellulose from Trichoderma harzianum: purification and partial characterization, inducing of and biological activity against plant pathogenic Pythium spp. Eur J Plant pathol. 103, 331-344 Thrane C, Nielsen MN, Sørensen J, Olsson S. (2001). Pseudomonas fluorescens DR54 reduces sclerotia formation, biomass development, and disease incidence of Rhizoctonia solani causing damping-off in sugar beet. Microbial Ecology. 42, 438-445 Tomme P, Creagh AL, Kilburn DG, Haynes CA. (1996). Interaction of polysaccharides with the N-terminal cellulosebinding domain of Cellulomonas fimi CenC. 1. Binding specificity and calorimetric analysis. Biochemistry. 35, 13885-13894 Tsai LC, Shyur LF, Cheng YS, Lee SH. (2005). Crystal structure of truncated Fibrobacter succinogenes 1,3-1,4-B-D-glucanase in complex with B-1,3-1,4-cellotriose. J Mol Biol. 354, 642-651 Vellicce GR, Díaz Ricci JC, Hernández L, Castagnaro AP. (2006). Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Research. 15, 57-68 Vázquez-garcidueñas S, Leal-morales CA, Herrera-estrella A. (1998). Analysis of the B-1,3-glucanolytic system of the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol. 64, 1442-1446 Venkatesan P, perfect JR, Myers SA. (2005). Evaluation and management of fungal infections in immunocompromised patients. Dermatol Ther. 18, 44-57 Villettaz JC, Steiner D, Trogus H. (1984). The use of a B-glucanase as an enzyme in wine clarification and filtration. Am J Enol Vitic. 35, 253-256 Watanabe T, Kasahara N, Aida K, Tanaka H. (1992). Three N-terminal domains of B-1,3-glucanase A1 are involved in binding to insoluble B-1,3-glucan. J Bacteriol. 174, 186-190 Wolski E, Maldonado S, Daleo G, Andreu A. (2007). Cell wall A-1,3-glucans from a biocontrol isolate of Rhizoctonia: immunocytolocalization and relationship with A-glucanase activity from potato sprouts. Mycological Research. 111, 976-984 Wood TM, Bhat KM. (1988). Methods for measuring cellulose activities. Methods Enzymol. 160, 87-112 Yamamoto M, Ezure T, Watanabe T, Tanaka H, Aono R. (1998). C-terminal domaim of B-1,3-glucanase H in Bacillus circulans IAM1165 has a role in binding to insoluble B-1,3-glucan. FEBS Lett. 433, 41-43 Yi SY, Hwang BK. (1997). Purification and antifungal activity of a basic 34 kDa B-1,3-glucanase from soybean hypocotyls inoculated with Phytophthora sojae f. sp. glycines. Mol Cells. 7, 408-413 Zverlov VV, Volkov IY, Velikodvorskaya TV, Schwart WH. (1997). Highly thermostable endo-1,3-B-glucanase (laminarinase) LamA from Thermotoga neapolitana: nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology. 143, 1701-1708 Zhao G, Ali E, Sakka M, Kimura T, Sakka K. (2006). Binding of S-layer homology modules from Clostridium thermocellum SdbA to peptidoglycans. Appl microbial Biotechnol. 70, 464-469 Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S, Blanc-Brude O, Barateau V, Potteaux S, Merval R, Esposito B, Teissier E, Daemen MJ, Leséche G, Boulanger C, Tedgui A, Mallat Z. (2007). Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation. 115, 2168-2177 Baumgartner S, Hofmann K, Chiquet-ehrismann R, Bucher P. (1998). The discoidin domain family revisited: New members from prokaryotes and a homology-based fold prediction. Protein Science. 7, 1626-1631 Berger EA, Armant R. (1982). Discoidins I and II: Common and unique regions on two lectins implicated in cell-cell cohesion in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA. 79, 2162-2166 Barondes SH, Haywood-Reid PL, Cooper DNW. (1985). Discoidin I, an Endogenous lectin, is externalized from Dictyostelium discoideum in multilamellar bodies. J. Cell. Biol. 100, 1825-1833 Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382, 769-781 Boraston AB, Ficko-Blean E, Healey M. (2007). Carbohydrate recognition by a large Sialidase toxin from Clostridium perfringens. Biochemistry. 46, 11352-11360 Bormann C, Baier D, Hörr I, Raps C, Berger J, Jung G, Schwarz H. (1999). Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tü901 that interferes with growth polarity. J. Bacteriol. 181, 7421-7429 Boddaert J, kinugawa K, Lambert JC, Boukhtouche F, Zoll J, Merval R, Blanc-Brude O, Mann D, Berr C, Vilar J, Garabedian B, Journiac N, Charue D, Silvestre JS, Duyckaerts C, Amouyel P, Mariani J, Tedgui A, Mallat Z. (2007). Evidence of a role for lactadherin in Alzheimer’s disease. Am J Pathol. 170, 921-929 Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem .72, 248-254 Corfield T. (1992). Bacterial sialidases-roles in pathogenicity and nutrition. Glycobiology. 2, 509-521 Crennell S, Garman E, Laver G, Vimr E, Taylor G. (1994). Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure. 2, 535-544 Canard B, Garnier T, Saint-Joanis B, Cole ST. (1994). Molecular genetic analysis of the nagH gene encoding a hyaluronidase of Clostridium perfringens. Mol Gen Genet. 243, 215-224 Cheng YM, Hong TY, Liu CC, Meng M. (2009). Cloning and functional characterization of a complex endo-B-1,3-glucanase from Paenibacillus sp. Appl Microbiol Biotechnol. 81, 1051-1061 Dyka FM, Wu WWH, Pfeifer TA, Molday LL, Grigliatti TA, Molday RS. (2008). Characterization and purification of the discoidin domain-containing protein retinoschisin and its interaction with galactose. Biochemistry. 47, 9098-9106 Ensslin MA, Shur BD. (2003). Identiification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell. 114, 405-417 Fraternali F, Cavallo L, Musco G. (2003). Effects of pathological mutations on the stability of a conserved amino acid traid in retinoschisin. FEBS. 544, 21-26 Frazier WA, Rosen SD, Reitherman RW, Barondes SH. (1975). Purification and comparison of two developmentally regulated lectins from Dictyostelium discoideum. J. Biol. Chem. 250, 7714-7721 Ficko-blean E, Boraston AB. (2006). The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-B-hexosaminidase with its carbohydrate receptor. J. Biol. Chem. 281, 37748-37757 Foster PA, Fulcher CA, Houghten RA, Zimmerman TS. (1990). Synthetic factor VIII peptides with amino acid sequences contained within the C2 domain of factor VIII inhibit factor VIII binding to phosphatidylserine. Blood. 75, 1999-2004 Fradin C, Poulain D, Jouault T. (2000). B-1,2-linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein
摘要: 
從土壤裡分離出來的革蘭氏陽性菌之Paenibacillus sp.,選殖出一段具B-1,3-葡萄聚醣水解酵素活性的基因,此酵素命名為LamA,轉譯出1,793個胺基酸,由N端到C端分別為訊息胜肽、三重複SLH、未知功能性區域、第16家族醣基水解酵素、四重複第四家族的碳水化合物結合區及似第五及八凝集因子的C端。五個不同的截斷蛋白質成功的被表達及純化,用於酵素的生化特性分析。含有酵素催化區域之不同截斷蛋白質成功的被表達及純化。實驗證實含有催化區域的酵素可專一性的水解B-1,3-及B-1,3-1,4-葡萄聚醣,主要的水解產物為內切型的B-1,3-昆布三聚醣。特別是針對不溶性的聚醣,含有未知功能性區域、碳水化合物結合區及與第五及第八血液凝集因子C端相似區域的酵素會增強酵素催化區域的活性。碳水化合物結合實驗分析,具有碳水化合物結合區及與第五及第八的血液凝集因子C端相似區域的酵素,對B-1,3-、B-1,3-1,4-及B-1,4-葡萄多聚醣有結合能力。這些輔助性的區域也會加強催化區域抑制白色念珠菌(Candida albicans)及立枯絲核病菌(Rhizoctonia solani)的菌絲生長。
在先前研究中,來自於Paenibacillus sp.的誘導培養液,純化獲得44 -kDa具有水解B-1,3-葡萄聚醣的酵素活性,其N端定序為AGNWNLVWSDEFDG,而此酵素水解昆布醣的主要終產物為葡萄醣,LamA主要的水解終產物為昆布三聚醣,其N端定序為MGKWELVWGDEFDG,所以Paenibacillus sp.至少具有2種水解B-1,3-葡萄聚醣的酵素,能加成水解B-1,3-葡萄聚醣,為細菌的營養來源。
實驗中證實含有Fa5/8C區域之CF蛋白質,能增進水溶性及不溶性多醣類的結合,增進對多醣類的水解能力及抗R. solani的菌絲生長,也能增進抑制Fusarium oxysporum f. sp. lycopersici大分生孢子發芽及抑制Glomerella cingulata分生孢子的菌絲長度。在能與碳水化合物結合的功能,依它們胺基酸序列的相似性,歸為第32家族的碳水化合物結合區蛋白質。實驗證實單具Fa5/8C區域之LamAF蛋白質可以與不溶性聚醣如幾丁質、地衣多醣、纖維素及洋菜凝膠及水溶性聚醣如昆布醣及甘露聚醣結合。生化特性分析顯示LamAF呈現單體及雙體。在這一部份的實驗中,我們比對真核及原核之Fa5/8C蛋白質的序列,對保留性芳香族胺基酸進行點突變,以了解突變胺基酸在LamAF結構及對碳水化合物結合能力上的角色。
位於催化區域的前端之未知功能區域命名為UF,經序列比對歸屬為DUF1533家族。截斷蛋白質SC(含有UF及催化區域)能抑制F. oxysporum f. sp. lycopersici大分生孢子發芽及抑制G. cingulata分生孢子的菌絲長度。在此研究中針對UF構築表達質體,探討UF的生化特性及抗真菌的活性分析。分子篩色層層析、glutaraldehyde共價鍵結反應及分析型離心機的分析,結果顯示UF具單體及雙體兩種型式,單體為主要。實驗證實UF能與幾丁質、地衣多醣、纖維素、洋菜凝膠結合,結合強度依序為幾丁質 > 洋菜凝膠 > 地衣多醣 > 纖維素。對水溶性聚醣如昆布聚醣及甘露聚醣則無吸附能力。

A β−1,3−glucanase gene, encoding a protein of 1,793 amino acids, was cloned from a strain of Paenibacillus sp. in this study. This large protein, designated as LamA, consists of many putative functional units, which include, from N to C terminus, a leader peptide, three repeats of the S-layer homologous module, a catalytic module of glucoside hydrolase family 16, four repeats of the carbohydrate-binding module of family CBM-4-9, and an analogue of coagulation factor Fa5/8C. Several truncated proteins, composed of the catalytic module with various organizations of the appended modules, were successfully expressed and characterized in this study. Data indicated that the catalytic module specifically hydrolyze β−1,3− and β−1,3−1,4−glucans. Also, laminaritriose was the major product upon endolytic hydrolysis of laminarin. The CBM repeats and Fa5/8C analogue substantially enhanced the hydrolyzing activity of the catalytic module, particularly toward insoluble complex substrates, suggesting their modulating functions in the enzymatic activity of LamA. Carbohydrate-binding assay confirmed the binding capabilities of the CBM repeats and Fa5/8C analogue to β−1,3−, β−1,3−1,4−, and even β−1,4−glucans. These appended modules also enhanced the inhibition effect of the catalytic module on the growth of Candida albicans and Rhizoctonia solani.
An analogue of coagulation factor Fa5/8C was also called discoidin domain (DS). Protein CF, consisting of Fa5/8C and the catalytic module, enhanced the binding of soluble and insoluble glucans. Also, CF had greater hydrolytic activity for glucans and inhibitory effect on the growth of Rhizoctonia solani than catalytic domain alone. Protein CF, consisting of Fa5/8C and the catalytic module, enhanced the inhibitory effect on the germination of Fusarium oxysporum f. sp. lycopersici and on the mycelium growth of Glomerella cingulata than the catalytic domain alone. A variety of molecule including lipid、carbohydrate and membrane could be bound by Fa5/8C. According to amino acid sequences similarity, Fa5/8C, that bind carbohydrate, also belonged to carbohydrate-binding module of family CBM 32. The Fa5/8C of LamA, referred as LamAF, was able to bind various insoluble substrates such as chitin、lichenan、avicel、agarose and soluble substrate such as laminarin and mannan. Biochemical analysis suggests that part of LamAF was dimeric form. Amino acid iv
sequences alignment among eukaryotic and prokaryotic Fa5/8Cs indicated several conserved aromatic amino acids residues. They were mutated to Ala and the consequence on LamAF conformation and binding capacity to carbohydrate were analyzed in this study.
Function of the module preceding the catalytic domain of LamA is not predictable. Sequence alignment suggested that the module (we named it UF) belongs to an unknown-function protein family DUF1533. Truncated protein SC, consisting of UF and the catalytic domain of LamA, inhibited the germination of macro conidia of Fusarium oxysporum f. sp. lycopersici and retarded the hyphal growth from conidia of Glomerella cingulata. Expression plasmid for UF was constructed to explore its function in this study. Gel filtration chromatography, glutaraldehyde crosslinking, and analytical ultracentrifugation analysis suggest that most of UF are in monomeric forms but some associate into dimer. UF had binding affinity to various insoluble polysaccharides in the order of chitin > agarose > lichenan > cellulose; however, it could not bind soluble polysaccharides such as laminarin and mannan.
URI: http://hdl.handle.net/11455/36227
其他識別: U0005-2707200918335300
Appears in Collections:生物科技學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.