Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36236
標題: 鐵炮百合花藥專一基因之特性分析
Characterization of an Anther-specific Gene in Lilium longiflorum
作者: 陳敬平
Chen, Jing-Ping
關鍵字: lily anther;百合 花藥
出版社: 生物科技學研究所
引用: 蔡月夏。(1995)。台灣農家要覽農作篇(二)。財團法人豐年社主編 585-588頁。 蔡淳瑩、蔡月夏、林學詩。(1998)。花蓮區農業專訊。 Bourne HR, Wrischnik L, Kenyon C (1990) Ras proteins. Some signal developments. Nature 348: 20-27. Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol. 133: 713-725. Beligni MV, Lamattina L (1999a) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide Biol. Chem. 3: 199–208. Beligni MV, Lamattina L (1999b) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208: 337–344. Browse J, Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol. 146: 832-838. Carl Wu (1995) Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Boil. 11: 441–469. Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu HM, Cheung AY (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14: 2175-2190. Cheung AY, Duan QH, Costa SS, de Graaf BH, Di Stilio VS, Feijo J, Wu HM (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol. Plant. 1: 686-702. Cipollini D, Enright S, Traw MB, Bergelson J (2004) Salicylic acid inhibits jasmonic induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol. Ecol. 13:1643-1653. Constabel CP, Bergey DR, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc. Natl. Acad. Sci. 92: 407-411. Dai S, Li L, Chen T, Chong K, Xue Y, Wang T (2006) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6: 2504-2529. Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T (2007) Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Molecular and Cellular Proteomics 6: 207-230. De Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, Mc Kim SM, Haughn GW, Kombrink E, Douglas CJ (2009) A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21: 507-525. De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D (2005) Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol. 46: 827-836. Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut Rella M, Kessmann H, Ward E, Ryals J (1994) A central role for salicylic acid in plant disease resistance. Science 266: 1247-1250. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide signal functions as a signal in plant disease resistance. Nature 394: 585-588. Diaz M, Achkor H, Titarenko E, Martinez MC (2003) The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Lett. 543: 136-139. Dumas C, Rogowsky P (2008) Fertilization and early seed formation. C. R. Biol. 331: 715-725. Dure LIII, Crouch M, Harada J, Ho THD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12: 475-486. Fuchs Y, Lieberman MI (1968) Effects of kinetin, IAA and gibberellin on ethylene production, and their interactions in growth of seedlings. Plant Physiol. 43: 2029-2036. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205-227. Giorno F, Wolters Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C (2010) Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61: 453-462. Goto N, Pharis RP (1999) Role of gibberellins in the development of floral organs of gibberellin-deficient mutant, ga1-1, of Arabidopsis thaliana. Can. J. Bot. 77: 944-954. Gu Y, Li S, Lord EM, Yang Z (2006) Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell 18: 366-381. Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wlese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel K (1993) Disease resistance results from, foreign phytoalexin expression in a nove1 plant. Nature 361: 153-156. Hirano H, Islam N, Kawasaki H (2004) Technical aspects of functional proteomics in plants. Phytochemistry 65: 1487-1498. Halim VA, Altmann S, Ellinger D, Eschen Lippold L, Miersch O, Scheel D, Rosahl S (2009) PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J. 57:230-242. Holmes Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5: 4864-4884. Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 132: 640-652. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 5: R85. Howe GA, Lightner J, Browse J, Ryan CA (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8: 2067-2077. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59: 41-66. Hsu SW, Cheng CL, Tzen TJ, Wang CS (2010) Rop GTPase and its target cdc42/Rac-interactive-binding motif-containing protein genes respond to desiccation during pollen maturation. Plant Cell Physiol. In press (confirmation letter attached) Hsu YF, Wang CS, Raja R (2007) Gene expression pattern at desiccation in the anther of Lilium longiflorum. Planta 226: 311-322. Izhaki A, Borochov A, Zamski E, Weiss D (2002) Gibberellin regulates post-microsporogenesis processes in petunia anthers. Physiol. Plant. 115: 442-447. Imin N, Kerim T, Weinman JJ, Rolfe BG (2006) Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Molecular and Cellular Proteomics 5: 274–292. Jacobsen JV, Pearce DW, Poole AT, Pharis RP, Mander LN (2002) Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol. Plant. 115: 48-441. Jacobsen SE, Olszewski NE (1991) Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiol. 97: 409-414. Kalinowski A, Winiarezyk K, Radlowski M (2002) Pollen coat proteins after two dimensional gel electrophoresis and pollen wall ultrastructure of Secale cereale and Festuca pratensis. Sex. Plant Reprod. 15: 75-83. Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi Tanaka M, Ashikari M, Matsuoka M. (2003) Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 35: 104-115. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008b) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. 105: 7100-7105. Kerim T, Imin N, Weinman JJ, Rolfe BG (2003) Proteome analysis of male gametophyte development in rice anthers. Proteomics 3: 738-751. Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305: 665-668. Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201-1224. Kost B, Spielhofer P, Chua NH (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 16: 393-401. Kuc J (1982) Induced immunity to plant diseases. BioScience 32: 854–860 Lee YJ, Yang Z (2008) Tip growth: Signaling in the apical dome. Curr. Opin. Plant Biol. 11: 662-671. Lewis J, Martin R, Keith R, Alexander J, Peter W, Bruce A (2007) The cytoskeleton. In: Sarah G.(ed), Molecular Biology of the Cell 4th. Garland Science, New York, pp 907-982. Lisboa S, Scherer GE, Quader H (2008) Localized endocytosis in tobacco pollen tubes: visualisation and dynamics of membrane retrieval by a fluorescent phospholipid. Plant Cell Rep. 27: 21-28. Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol. 56: 393-434. Malamy J, Carr JP, Klessig DF, and Raskin I (1990) Salicylic acid: A likely endogenous signal in the resistance response of tobacco to vira1 infection. Science 250: 1002-1004. Maleck K, Dietrich RA (1999) Defense on multiple fronts: How do plants cope with diverse enemies? Trends Plant Sci. 4: 215-219. Martin O, Penate L, Alvare A, Cardenas R, Horvath JE (2009) Some possible dynamical constraints for life’s origin. Orig. Life Evol. Biosph 39: 533-544. McCormick S (1993) Male gametophyte development. Plant Cell 5: 1265-1275. McCormick S (2004) Control of male gametophyte development. Plant Cell 16: 142-153. McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. 94: 5473-5477. Miki Hirosige H, Yamanaka Y, Nakamura S, Kurata S, Hirano H (2004) Changes of protein profiles during pollen development in Lilium longiflorum. Sex. Plant Reprod. 16: 209-214. McNeil KJ, Smith AG (2010) A glycine-rich protein that facilitates exine formation during tomato pollen development. Planta 231: 793-808. Melotto M, Mecey C, Niu Y, Chung HS, Katsir L, Yao J, Zeng W, Thines B, Staswick PE, Browse J, Howe GA, He SY (2008) A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J. 55: 979-988. Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y (1998). Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39: 500-507. Noir S, Bra¨utigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem. Biophys. Res. Commun. 337: 1257-1266. Orozco Cardenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signalling in tomato plants. Plant Physiol. 130: 487-493. Pacini E (2000) From anther and pollen ripening to pollen presentation. Plant. Sys. Evol. 222: 19-43. Park BJ, Liu ZC, Kanno A, Kameya T (2005) Increased tolerance to salt- and water deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. J. Plant Growth Regul. 45: 165-171. Pieterse CM, Leon Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5: 308-316. Pina C, Pinto F, Feijo JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 138: 744-756. Potocky M, Jones MA, Bezvoda R, Smirnoff N, Za´rsky V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 174: 742-751. Rea G, Metoui O, Infantino A, Federico R, Angelini R (2002) Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion. Plant Physiol. 128: 865-875. Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J. 39: 715-733. Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrin JV (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6: 5529-554. Ryals JA, Neuenschwander UH,Willits MG, Molina A, SteinerH, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8: 1809-1819. Sambrook JK, Fritsch ET, Maniatis R (1989) Molecular cloning: A laboratory annual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Santner A, Calderon Villalobos LI, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 5: 301-307. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16: 46-60. Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ. 25: 211-222. Sheoran IS, Sproule KA, Olson DJH, Ross ARS, Sawhney VK (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sex. Plant Reprod. 19: 185-196. Steven E. Jacobsen and Neil E. Olszewski (1991) Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiol. 97: 409-414. Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu. Rev. Plant Pathol. 35: 235-270. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007). JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661-665. Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR (2008) Heterotrimeric G proteins-mediated resistanceto necrotrophic pathogens includes mechanisms ndependent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J. 58: 69-81. Verwoerd TC, Dekker BMM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 17: 2362. Vick BA, Zimmerman, DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol. 75: 458-461. Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. 95: 7209-7214. Wang CS, Liau YE, Wu TD, Su CC, Huang JC, Lin CH (1998) Characterization of a desiccation-related protein in lily pollen during development and stress. Plant Cell Physiol. 39: 1307-1314. Wang CS, Huang JC, Hu JH (1999) Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol. Biol. 40: 807-814. Whittaker MM, Kersten, PJ, Nakamura N, Sanders Loehr J, Schweizer ES, Whittaker JW (1996) Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J. Biol. Chem. 271: 681-687. Whittaker MM, Kersten PJ, Cullen D, Whittaker JW (1999) Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J. Biol. Chem. 274: 36226–36232. Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J. Exp. Bot. 60: 1479-1492. Xu Y, Chang P-FL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077-1085. Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, Wilson ZA (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19: 534-548. Yang CY, Chen YC, Jauh GY, Wang CS (2005) A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol. 139: 836-846. Yang CY, Wu CH, Jauh GY, Huang JC, Lin CC, Wang CS (2008) The LLA23 protein translocates into nuclei shortly before desiccation in developing pollen grains and regulates gene expression in Arabidopsis. Protoplasma 233: 241-254. Zhou BJ, Wang XP, Wang YJ (2007) cDNA cloning, expression, protein purification, and characterization of a novel glyoxal oxidase related gene from Vitis pseudoreticulata. Biol. Plant. 51: 458-466.
摘要: 
LLP40是經由抑制扣除雜合法(suppression-subtractive hybridization)從鐵炮百合花藥乾燥時期的cDNA集合庫中挑出的。LLP40經由5''-RACE和3''-RACE的延長,可獲得一長度為2085 bp的序列。經序列比對,LLP40 5’UTR部分為190 bp,3’UTR為90 bp,ORF為1803 bp,可轉譯出600個胺基酸,預測分子量約為64 kDa,等電點為5.2。LLP40在其N端具有一疏水性訊息胜肽(signal peptide),經軟體分析為分泌性蛋白。經蛋白質序列比對後得知LLP40與一家族基因glyoxal oxidase有高度的相同性,其與水稻的glyoxal oxidase基因有54%的相同度(identity),而玉米則是49%。LLP40 N端擁有高度的保留區域(conserved domain)。Glyoxal oxidase已知與木質素(lignin)的降解有關,並受到二價金屬離子調控。利用北方墨漬法分析,LLP40為花藥專一性基因,在花藥成熟晚期大量表現。14~15 cm百合花藥開始表現LLP40 mRNA,隨著花藥成熟,在15 cm花藥大量累積,且至萌發後32小時仍持續表現,顯示LLP40可能對花粉管的生長很重要。為了更進一步了解LLP40對花粉生長的影響(phynotype),乃利用花粉專一的Zm 13啟動子起動建構了三種不同的重組基因構築,分別為GFP-LLP40,LLP40-GFP與只有LLP40的載體。以基因槍方式送入百合花粉內做短暫性表現,藉以觀察LLP40對花粉萌發與花粉管延長的影響。在螢光顯微鏡觀察下,我們可以觀察到LLP40可能存在於花粉管的細胞質中,花粉管生長並沒有明顯的差別。

LLP40 clone has been identified from a suppression subtractive cDNA library constructed from mRNA isolated at the desiccation stage of lily (Lilium longiflorum) anthers. Using 5''-RACE and 3''-RACE, the LLP40 cDNA with a length of 2,085 bp was obtained. LLP40 contains 190 bp at 5''UTR, 90 bp at 3''UTR, and 1803 bp of ORF (open reading frame) which encodes 600 amino acids with a predicted molecular mass of 63.8 kDa, and its isoelectric point is 5.157. The LLP40 protein has a signal peptide at N-terminus suggesting that it is a secretory protein. Sequences analysis revealed that LLP40 is highly related to a family gene of glyoxal oxidase, characterized as a lignin degradation protease. LLP40 shared 54% with rice and 49% identity with maize glyoxal oxidase. Glyoxal oxidases contain a conserved domain, reported to bind Cu2+ or Fe2+ cation. Northern blot analysis showed that LLP40 mRNA is anther- specific. The LLP40 mRNA was significantly detected in the anther of 14~15 cm and accumulated to the maximum level at 15 cm anthers during maturation. The LLP40 mRNA remained its level of accumulation in the growing pollen tube 32 h after germination. It suggests that LLP40 may be importantly involved in tube growth. To explore whether LLP40 may affect tube growth, particle bombardment of GFP-LLP40 and LLP40-GFP driven by pollen-specific promoter Zm13 showed that LLP40 is located in the cytoplasm of pollen grains and no altered phenotype was obtained.
URI: http://hdl.handle.net/11455/36236
其他識別: U0005-0508201010263600
Appears in Collections:生物科技學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.