Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/36256
標題: | 鐵炮百合花藥發育和花粉萌發生長的三個專一性基因之分子調控分析 The analysis for molecular regulation of three specific genes involved in the lily anther development and pollen germination and tube growth |
作者: | 徐思維 Hsu, Ssu-Wei |
關鍵字: | Desiccation;乾燥;Abscisic acid;Pollen;離層酸;花粉 | 出版社: | 生物科技學研究所 | 引用: | 胡適宜。1991。被子植物之胚胎學,曉園出版社,55-56頁。 許圳塗、金石文、阮明淑。2002。實用花卉栽培技術專輯5-百合。財團法人台灣區花卉發展協會。 蔡月夏。1995。台灣農家要覽農作篇(二),財團法人豐年社主編,585-588頁。 Allwood, E. G., Anthony, R. G., Smertenko, A. P., Reichelt, S., Drobak, B. K., Doonan, J. H., Weeds, A. G., and Hussey, P.J. (2002) Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell 14: 2915-2927. Balsamo, R. A., Wang, J. L., Eckard, K.J. Wang, C.-S., and Lord, E.M. (1995) Immunogold localization of a developmentally regulated, tapetal-specific, 15 kDa lily anther protein. Protoplasma 189: 17-25. Becker, J. D., Boavida, L. C., Carneiro, J., Haury, M., and Feijo, J. A. (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol. 133: 713-725. Bedinger, P. A. (1992) The remarkable biology of pollen. Plant Cell 4: 879-887. Blomstedt, C. K., Knox, R. B., and Singh, M.B. (1996) Generative cells of Lilium longiflorum posses translatable mRNA and functional protein synthesis machinery. Plant Mol. Biol. 31: 1083-1086. Buitink, J., Leprince, O., Hemminga, M.A., and Hoekstra, F.A. (2000) The effects of moisture and temperature on the ageing kinetics of pollen: interpretation based on cytoplasmic mobility. Plant Cell Environ. 23: 967-947. Chiang, J.-Y., Shu, S.-W., Ko, C.-W., and Wang, C.-S. (2006) Biochemical characterization of a pollen-specific cDNA encoding polygalacturonase in Lilium longiflorum. Plant Sci. 170: 433-440. Crossley, S. J., Greenland, A. J., and Dickinsion, H. G. (1995) The characterization of tapetum-specific cDNAs isolated from a Lilium henryi L. meiocyte subtractive cDNA library. Planta 196: 523-529. Eady, C., Lindsey, K., and Twell, D. (1995) The significance of microspore division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell 7: 65-74. Edlund, A. F., Swanson, R., and Preuss, D. (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16: S84-S97. Gu, Y., Vernoud, V., Fu, Y., and Yang, Z. (2003) ROP GTPases regulation of pollen tube growth through the dynamics of tip-localized F-actin. J. Exp. Bot. 54: 93-101. Heslop-Harrison, J. (1979) An interpretation of the hydrodynamics of pollen. Am. J. Bot. 66:737-743. Heslop-Harrison, Y., and Heslop-Harrison, J. (1992) Germination of monocoplate angiosperm pollen evolution of the actin cytoskeleton and wall during hydration activation and tube emergence. Ann. Bot. 69: 385-394. Holmes-Davis, R., Tanaka, C. K., Vensel, W. H., Hurkman, W. J., and McCormick, S. (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5: 4864-4884. Honys, D., and Twell, D. (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 132: 640-652. Hsu, S.-W., and Wang, C.-S. (2006) A lily pollen-specific cDNA encoding the Cdc42/Rac-interactive-binding motif-containing protein associated with pollen tube growth. Physiol. Plant. 126: 232-242. Hsu, Y.-F., Wang, C.-S., and Raja, R. (2007) Gene expression pattern at desiccation in the anther of Lilium longiflorum. Planta 226: 311-322. Huang, J.–C., Lin, S. -M., and Wang, C.-S. (2000) A pollen-specific and desiccation-associated transcripts in Lilium longiflorum during development and stress. Plant Cell Physiol. 41: 477-485. Johnson, S. A., and McCormick, S. (2001) Pollen germinates precociously in the anthers raring-to-go, an Arabidopsis gametophytic mutant. Plant Physiol. 126: 685-695. Johri, B. M. (1984) Embryology of angiosperms. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 53-76. Kamalay, J. C., and Goldberg, R. B. (1980) Regulation of structural gene expression in tobacco. Cell 19: 935-946. Ko, C.-W., Yang, C.-Y., and Wang, C.-S. (2002) A desiccation-induced transcript in lily (Lilium longiflorum) pollen. J. Plant Physiol. 159: 765-772. Koltunow, A. M., Truettner, J., Cox, K. H., Wallroth, M., and Goldberg, R. B. (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201-1224. Mascarenhas, J. P. (1990) Gene activity during pollen development. Annu. Rev. Plant Physiol. 41: 317-338. McCormick, S. (1993) Male Gametophyte Development. Plant Cell 5: 1265-1275. McCormick, S. (2004) Control of male gametophyte development. Plant Cell 16: S142-S153. Mogami, N., Shiota, H., and Tanaka, I. (2002) The identification of a pollen-specific LEA-like protein in Lilium longiflorum. Plant Cell and Environ. 25: 653-663. Pina, C., Pinto, F., Feijo, J. A., and Becker, J. D. (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 138: 744-756. Rosen, W. G. (1961) Studies on pollen tube chemotropism. Am. J. Bot. 48: 889-895. Scott, R. (1994) Anther development: a molecular perspective. In the molecular biology of flowering. Brian R. J. Eds. CAB International. UK. pp 141-193. Scott, R. J., Spielman, M., and Dickinson, H. G. (2004) Stamen structure and function. Plant Cell 16: S46-S60. Shivanna, K. R., and Johri, B. M. (1985) The angiosperm pollen. Structure and function. Wiley Eastern Limited. India. pp 21-52 Tiwari, S. C., and Polito, V. S. (1988) Organization of the cytoskeleton in pollen tubes of Pyrus communis: A study employing conventional and freeze-substitution electron microscopy, immunofluorescence and rhodamine-phalloidin. Protoplasma 147: 100-112. Twell, D., Soon, K. P., and Eric, L. (1998) Asymmertric division and cell-fate determination in developing pollen. Trends Plant Sci. 3: 305-310. Wagner, V. T., Cresti, M., Salvaticl, P., and Tiezzl, A. (1990) Changes in volume, surface area, and frequency of nuclear pores of the vegetative nucleus of tobacco pollen in fresh, hydrated, and activated conditions. Planta 181: 304-309. Wang, C.-S., Liau, Y.-E. Huang, J.-C., Wu, T.-D., Su, C.-C., and Lin, C. H. (1998) Characterization of a desiccation-related protein in lily pollen during development and stress. Plant Cell Physiol. 39: 1307-1314. Wang, C.-S., Lin, S. -M., and Wei, S.-L. (1999) A stress-inducible protein associated with desiccation in lily pollen. Bot. Bull. Acad. Sin. 40: 199-205 Wang, C.-S., Walling, L. L., Eckard, K. J., and Lord, E. M. (1992) Immunological characterization of a tapetal protein in developing anthers of Lilium longiflorum. Plant Physiol. 99: 822-829. Wang, C.-S., Wu, T.-D., Chung, C.-K. W., and Lord, E. M. (1996) Two classes of pollen-specific, heat-stable proteins in Lilium longiflorum. Physiol. Plant. 97: 643-650. Willing, R. P., Bashe, D., and Mascarenhas, J. P. (1984) An analysis of the complexity and diversity of mRNAs from pollen and shoots of Tradescantia. Plant Physiol. 75: 865-868. Wolters-Arts, M., Lush, W. M., and Mariani, C. (1998) Lipids are required for directional pollen-tube growth. Nature 392: 818-821. Wu, H. M., and Cheun, A. Y. (2000) Programmed cell death in plant reproduction. Plant Mol. Biol. 44: 267-281. Yang, C.-Y., Chen, Y.-C., Jauh, G. Y. and Wang, C.-S. (2005) A lily ASR protein involves Abscisic Acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol. 139: 836-846. 鄭兆伶。2006。鐵炮百合LLP-Rop1基因於花粉生長之功能性分析。國立中興大學碩士論文。 Ali, R., Zielinski, R.E., and Berkowitz, G.A. (2006) Expression of plant cyclic nucleotide-gated cation channels in yeast. J. Exp. Bot. 57: 125-138. Allwood, E.G., Smertenko, A.P., and Hussey, P.J. (2001) Phosphorylation of plant actin-depolymerizing factor by calmodulinlike domain protein kinase. FEBS Lett. 499: 97–100 Assmann, S.M. (2002) Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14: S355-S373. Barwe, S.P., Sathiyabama, M., and Jayabaskaran, C. (2001) Induction of chitinase activity by exogenous cytokinins in excised dark-grown cucumber cotyledons: involvement of Ca2+ and staurosporine-sensitive protein kinase(s) in cytokinin signaling. J. Plant Physiol. 158: 1–7 Baxter-Burrell, A., Yang, Z., Springer, P.S., and Bailey-Serres, J. (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296: 2026-2028. Bedinger, P.A., and Edgerton, M.D. (1990) Developmental staging of maize microspores reveals a transition in developing microspore proteins. Plant Physiol. 92: 474-479. Berken, A. (2006) ROPs in the spotlight of plant signal transduction. Cell Mol. Life Sci. 63: 2446-2459. Bischoff, F., Molendijk, A., Rajendrakumar, C. S., and Palme, K. (1999) GTP-binding proteins in plants. Cell. Mol. Life Sci. 55: 233-256. Bischoff, F., Vahlkamp, L., Molendijk, A., and Palme, K. (2000) Localization of AtROP4 and AtROP6 and interaction with the guanine nucleotide dissociation inhibitor AtRhoGDI1 from Arabidopsis. Plant Mol. Biol. 42: 515-530. Boavida, L.C., and McCormick, S. (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 52: 570-582 Brembu, T., Winge, P., and Bones, A.M. (2005) The small GTPase AtRAC2/ROP7 is specifically expressed during late stages of xylem differentiation in Arabidopsis. J. Exp. Bot. 56: 2465-2476. Cardenas, L., Lovy-Wheeler, A., Kunkel, J.G., and Hepler, P.K. (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol. 146: 1611-1621. Chen, C.Y., Cheung, A.Y., and Wu, H.M. (2003) Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell 15: 237-249 Chen, C.Y., Wong, E.I., Vidali, L., Estavillo, A., Hepler, P.K., Wu, H.M., and Cheung, A.Y. (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14: 2175-2190. Chen, T., Wu, X., Chen, Y., Li, X., Huang, M., Zheng, M., Baluska, F., Samaj, J., and Lin, J. (2009) Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. Plant Physiol. 149: 1111-1126. Cheung, A.Y., and Wu, H.M. (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu. Rev. Plant Biol. 59: 547-572. Christensen, T.M., Vejlupkova, Z., Sharma, Y.K., Arthur, K.M., Spatafora, J.W., Albright, C.A., Meeley, R.B., Duvick, J.P., Quatrano, R.S., and Fowler, J.E. (2003) Conserved subgroups and developmental regulation in the monocot rop gene family. Plant Physiol.133: 1791-1808. Demidchik, V., and Maathuis, F.J. (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol. 175: 387-404. Detchepare, S., Heizmann, P., and Dumas, C. (1989) Changes in protein patterns and protein synthesis during anther development in Brassica oleracea. J. Plant Physiol. 135: 129-137. Dickinson, D.B. (1978) Influence of borate and pentaerythritol concentrations on germination and tube growth of Lilium longiflorum pollen. J. Am. Soc. Horti. Sci. 103: 413-416. Dodd, A.N., Kudla, J., and Sanders, D. (2010) The language of calcium signaling. Annu. Rev. Plant Biol. 61: 593-620. Faure, J., and Dagher, M.C. (2001) Interactions between Rho GTPases and Rho GDP dissociation inhibitor (Rho-GDI). Biochimie 83: 409-414. Filichkin, S.A., Leonard, J.M., Monteros, A., Liu, P.P., and Nonogaki, H. (2004) A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol. 134: 1080-1087. Frietsch, S., Wang, Y.F., Sladek, C., Poulsen, L.R., Romanowsky, S.M., Schroeder, J.I., and Harper, J.F. (2007) A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc. Natl. Acad. Sci .USA 104: 14531-14536 Golovkin, M., and Reddy, A.S. (2003) A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proc. Natl. Acad. Sci. USA 100: 10558-10563 Gu, Y., Fu, Y., Dowd, P., Li, S., Vernoud, V., Gilroy, S., and Yang, Z. (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J. Cell Biol. 169: 127-138. Gu, Y., Wang, Z., and Yang, Z. (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr. Opin. Plant Biol. 7: 527-736. Guo, K.M., Babourina, O., Christopher, D.A., Borsics, T., and Rengel, Z. (2008) The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol. Plant. 134: 499-507. Hamilton, D.W., Hills, A., Kohler, B., and Blatt, M.R. (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc. Natl. Acad. Sci. U S A 97: 4967-4972. Hancock, J.F., Cadwallader, K., Paterson, H., and Marshall, C.J. (1991) A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. 10: 4033-4039. Harada, A., and Shimazaki, K. (2009) Measurement of changes in cytosolic Ca2+ in Arabidopsis guard cells and mesophyll cells in response to blue light. Plant Cell Physiol. 50: 360-373. Hepler, P.K. (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17: 2142-2155 Holdaway-Clarke, T.L., and Hepler, P.K. (2003) Control of pollen tube growth: role of ion gradient and fluxes. New Phytol. 159: 539-563 Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.K., and Harmon, A.C., (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132: 666-680. Hsu, S.-W., and Wang, C.-S. (2006) A lily pollen-specific cDNA encoding the Cdc42/Rac-interactive-binding motif-containing protein associated with pollen tube growth. Physiol. Plant. 126: 232-242. Hsu, Y.-F., Wang, C.-S., and Raja, R. (2007) Gene expression pattern at desiccation in the anther of Lilium longiflorum. Planta 226: 311-322. Huang, J.-C., Lin, S.-M., and Wang, C.-S. (2000) Characterization of a pollen-specific and desiccation-associated transcript in Lilium longiflorum during development and stress. Plant Cell Physiol. 41: 477-485. Hwang, J.U., Gu, Y., Lee, Y.J., and Yang, Z. (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol. Biol. Cell 16: 5385-5399 Iwano, M., Entani, T., Shiba, H., Kakita, M., Nagai, T., Mizuno, H., Miyawaki, A., Shoji, T., Kubo, K., Isogai, A., and Takayama, S. (2009) Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol. 150: 1322-1334 Jung, Y.H., Agrawal, G.K., Rakwal, R., Kim, J.A., Lee, M.O., Choi, P.G., Kim, Y.J., Kim, M.J., Shibato, J., Kim, S.H., Iwahashi, H., and Jwa, N.S. (2006) Functional characterization of OsRacB GTPase-a potentially negative regulator of basal disease resistance in rice. Plant Physiol. Biochem. 44: 68-77. Kong, L., Wang, M., Wang, Q., Wang, X., and Lin, J. (2006) Protein phosphatases 1 and 2A and the regulation of calcium uptake and pollen tube development in Picea wilsonii. Tree Physiol. 26: 1001-1012 Kost, B. (2008) Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol. 18: 119-127. Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C., and Chua, N.H. (1999) Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 145: 317-330. Kudla, J., Batistic, O., and Hashimoto, K. (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22: 541-563. Laohavisit, A., Mortimer, J.C., Demidchik, V., Coxon, K.M., Stancombe, M.A., Macpherson, N., Brownlee, C., Hofmann, A., Webb, A.A.R., Miedema, H., Battey, N.H., and Davies, J.M. (2009) Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell 21: 479-493. Lee, Y.J., and Yang, Z. (2008) Tip growth: signaling in the apical dome. Curr. Opin. Plant Biol. 11: 662-671. Li, H., Lin, Y., Heath, R.M., Zhu, M.X., Yang, Z. (1999) Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11: 1731-1742 Li, J., Zhu, S., Song, X., Shen, Y., Chen, H., Yu, J., Yi, K., Liu, Y., Karplus, V.J., Wu, P., and Deng, X.W. (2006) A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem. Plant Cell 18: 340-349. Li, S., Gu, Y., Yan, A., Lord, E., and Yang, Z.B. (2008) RIP1 (ROP Interactive Partner 1)/ICR1 Marks Pollen Germination Sites and May Act in the ROP1 Pathway in the Control of Polarized Pollen Growth. Mol. Plant 1: 1021-1035. Luan, S. (2009) The CBL-CIPK network in plant calcium signaling. Trends. Plant Sci.14: 37-42. Ludwig, A.A., Romeis, T., and Jones, J.D. (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp. Bot. 55: 181-188. Luo, M., Gu, S.H., Zhao, S.H., Zhang, F., and Wu, N.H. (2006) Rice GTPase OsRacB: potential accessory factor in plant salt-stress signaling. Acta Biochim. Biophys. Sin. (Shanghai) 38: 393-402. Maliga, P., Klessig, D.F., Cashmore, A.R., Gruissem, W., and Varner, J.E. (1995) Methods in plant molecular biology. A laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. McCormick, S. (1993) Male gametophyte development. Plant Cell 5: 1265-1275. Meyerhoff, O., Muller, K., Roelfsema, M.R., Latz, A., Lacombe, B., Hedrich, R., Dietrich, P., and Becker, D. (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta 222: 418-427. Miedema, H., Demidchik, V., Very, A.A., Bothwell, J.H., Brownlee, C., and Davies, J.M. (2008) Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytol. 179: 378-385. Miki-Hirosige, H., Yamanaka, Y., Nakamura, S., Kurata, S., and Hirano, H. (2004) Changes of protein profiles during pollen development in L. longiXorum. Sex. Plant Reprod. 16: 209-214. Mortimer, J.C., Laohavisit, A., Macpherson, N., Webb, A., Brownlee, C., Battey, N.H., and Davies, J.M. (2008) Annexins: multifunctional components of growth and adaptation. J Exp. Bot. 59: 533-544. Myers, C., Romanowsky, S.M., Barron, Y.D., Garg, S., Azuse, C.L., Curran, A., Davis, R.M., Hatton, J., Harmon, A.C., and Harper, J.F. (2009) Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J. 59: 528-539 Nibau, C., Wu, H.M., and Cheung, A.Y. (2006) RAC/ROP GTPases ''hubs'' for signal integration and diversification in plants. Trends Plant Sci. 11: 309-315. Park, J., Gu, Y., Lee, Y., Yang, Z., and Lee, Y. (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol. 134: 129-136. Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G.J., Grill, E., and Schroeder, J.I. (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731-734. Putnam-Evans, C., Harmon, A.C., Palevitz, B.A., Fechheimer, M., and Cormier, M.J. (1989) Calcium-dependent protein kinase is localized with F-actin in plant cells. Cell Motil. Cytoskel. 12: 12–22 Qi, Z., Stephens, N.R., and Spalding, E.P. (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol. 142: 963-971. Qu, H.Y., Shang, Z.L., Zhang, S.L., Liu, L.M., and Wu, J.Y. (2007) Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytol. 174: 524-536 Ridley, A. (2000) Rho in GTPases, A. Hall, ed (Oxford: Oxford University Press) pp 89-136. Schmidt, A., and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16: 1587-1609. Scholz-Starke, J., Buttner, M., and Sauer, N. (2003) AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol. 131: 70-77. Shang, Z.L., Ma, L.G., Zhang, H.L., He, R.R., Wang, X.C., Cui, S.J., and Sun, D.Y. (2005) Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+-permeable channel which can be regulated by extracellular CaM. Plant Cell Physiol. 46: 598-608 Shaw, S.L. and Long, S.R. (2003) Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol. 131: 976-984. Sivitz, A.B., Reinders, A., and Ward, J.M. (2008) Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol. 147: 92-100 Stephens, N.R., Qi, Z., and Spalding, E.P. (2008) Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiol. 146: 529-538. Szucs, A., Dorjgotov, D., Otvos, K., Fodor, C., Domoki, M., Gyorgyey, J., Kalo, P., Kiss, G.B., Dudits, D., and Feher, A. (2006) Characterization of three Rop GTPase genes of alfalfa (Medicago sativa L.). Biochim. Biophys. Acta 1759: 108-115. Takai, Y., Sasaki, T., and Matozaki, T. (2001) Small GTP-Binding proteins. Physiol. Rev. 81: 153-208. Tao, L.Z., Cheung, A.Y., Nibau, C., and Wu H.M. (2005) RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. Plant Cell 17: 2369-2383. Thion, L., Mazars, C., Nacry, P., Bouchez, D., Moreau, M., Ranjeva, R., and Thuleau, P. (1998) Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. Plant J. 13: 603-610. Trotochaud, A.E., Hao, T., Wu, G., Yang, Z., and Clark, S.E. (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11: 393-406. Urquhart, W., Gunawardena, A.H., Moeder, W., Ali, R., Berkowitz, G.A., and Yoshioka, K. (2007) The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Mol. Biol. 65: 747-761. Vernoud, V., Horton, A. C., Yang, Z., and Nielsen, E. (2003) Analysis of the small GTPases gene superfamily of Arabidopsis thaliana. Plant Physiol. 131: 1191-1208. Verwoerd, T.C., Dekker, B.M., and Hoekema, A. (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 17: 2362. Walch-Liu, P., Liu, L.H., Remans, T., Tester, M., and Forde, B.G. (2006) Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol. 47: 1045-1057. Wang, C.-S., Wu, T.-D., Chung, C.-K.W., and Lord, E.M. (1996). Two classes of pollen-specific, heat-stable proteins in Lilium longiflorum. Physiol. Plant. 97: 643-650. Wang, Y., Zhang, W.Z., Song, L.F., Zou, J.J., Su, Z., and Wu, W.H. (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol. 148: 1201-1211 Wang, Y.F., Fan, L.M., Zhang, W.Z., Zhang, W., and Wu, W.H. (2004) Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol. 136: 3892-3904 White, P.J., Bowen, H.C., Demidchik, V., Nichols, C., and Davies, J.M. (2002). Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim. Biophys. Acta 1564: 299–309. Willing, R.P., Bashe, D., and Mascarenhas, J.P. (1988) An analysis of the quantity and diversity of messenger RNAs from pollen and shoot of Zea mays. Theor. Appl. Genet. 75: 751–753. Winge, P., Brembu, T., Kristensen, R., and Bones, A. M. (2000) Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics 156: 1959-1971. Wu, G., Gu, Y., Li, S., and Yang, Z. (2001) A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell 13: 2841-2856. Wu, Y., Xu, X., Li, S., Liu, T., Ma, L., and Shang, Z. (2007) Heterotrimeric G-protein participation in Arabidopsis pollen germination through modulation of a plasmamembrane hyperpolarization-activated Ca2+-permeable channel. New Phytol. 176: 550-559. Xin, Z., Zhao, Y., and Zheng, Z.L. (2005) Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis. Plant Physiol. 139: 1350-1365. Xiong, L., Ishitani, M., Lee, H., and Zhu, J.-K. (2001) The Arabidopsis LOS/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13: 2063-2083. Xiong, L., and Zhu, J.K. (2003) Regulation of abscisic acid biosynthesis. Plant Physiol. 133: 29-36. Xu, J., Li, H., Chen, L., Wang, Y., Liu, L., He, L., and Wu, W.H. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ TRANSPORTER AKT1 in Arabidopsis. Cell 125: 1347–1360 Yang, Z. (2002) Small GTPases: Versatile signaling switches in plants. Plant Cell 12: S375-S388. Yang, Z., and Fu, Y. (2007) ROP/RAC GTPase signaling. Curr. Opin. Plant Biol. 10: 490-494. Yoon, G.M., Dowd P.E., Gilroy, S., and McCubbin, A.G. (2006) Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18: 867-878 Young, J.J., Mehta, S., Israelsson, M., Godoski, J., Grill, E., and Schroeder, J.I. (2006) CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proc. Natl. Acad. Sci. U S A 103: 7506-7511. Zhang, D., Wengier, D., Shuai, B., Gui, C.P., Muschietti, J., McCormick, S., and Tang, W.H. (2008) The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol. 148: 1368-1379. Zhang, Y., and McCormick, S. (2008) Regulation of pollen tube polarity: Feedback loops rule. Plant Signal Behav. 3: 345-347 Zheng, Z.L., Nafisi, M., Tam, A., Li, H., Crowell, D.N., Chary, S.N., Schroeder, J.I., Shen, J., and Yang, Z. (2002) Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 14: 2787-2797. Zheng, Z.-L., and Yang, Z. (2000) The Rop GTPases switch turns on polar growth in pollen. Trends Plant Sci. 5: 298-303. Zhou, L., Fu, Y., and Yang, Z. (2009) A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes. J. Integr. Plant Biol. 51: 751–761 Aya, K., Ueguchi-Tanaka, M., Kondo, M., Hamada, K., Yano, K., Nishimura, M., and Matsuoka, M. (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21: 1453-1472. Bantignies, B., Seguin, J., Muzac, I., Dedaldechamp, F., Gulick, P., and Ibrahim, R. (2000) Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mo.l Biol. 42: 871-881. Bate, N., and Twell, D. (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37: 859-869. Biesiadka, J., Bujacz, G., Sikorski, M.M., and Jaskolski, M. (2002) Crystal structures of two homologous pathogenesis-related proteins from yellow lupine. J. Mol. Biol. 319: 1223-1234. Brandazza, A., Angeli, S., Tegoni, M., Cambillau, C., and Pelosi, P. (2004) Plant stress proteins of the thaumatin-like family discovered in animals. FEBS Lett. 572: 3-7. Breda, C., Sallaud, C., el-Turk, J., Buffard, D., de Kozak, I., Esnault, R., and Kondorosi, A. (1996) Defense reaction in Medicago sativa: a gene encoding a class 10 PR protein is expressed in vascular bundles. Mol. Plant Microbe. Interact. 9: 713-719. Breiteneder, H., Ferreira, F., Reikerstorfer, A., Duchene, M., Valenta, R., Hoffmann-Sommergruber, K., Ebner, C., Breitenbach, M., Kraft, D., and Scheiner, O. (1992) Complementary DNA cloning and expression in Escherichia coli of Aln g I, the major allergen in pollen of alder (Alnus glutinosa). J. Allergy Clin. Immunol. 90: 909-917. Breiteneder, H., Hoffmann-Sommergruber, K., O''Riordain, G., Susani, M., Ahorn, H., Ebner, C., Kraft, D., and Scheiner, O. (1995) Molecular characterization of Api g 1, the major allergen of celery (Apium graveolens), and its immunological and structural relationships to a group of 17-kDa tree pollen allergens. Eur. J. Biochem. 233: 484-489. Bufe, A., Spangfort, M.D., Kahlert, H., Schlaak, M., and Becker, W.M. (1996) The major birch pollen allergen, Bet v 1, shows ribonuclease activity. Planta 199: 413-415. Cercos, M., Gomez-Cadenas, A., and Ho, T.H. (1999) Hormonal regulation of a cysteine proteinase gene, EPB-1, in barley aleurone layers: cis- and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant J. 19: 107-118. Chen, Z.Y., Brown, R.L., Rajasekaran, K., Damann, K.E., and Cleveland, T.E. (2006) Identification of a Maize Kernel Pathogenesis-Related Protein and Evidence for Its Involvement in Resistance to Aspergillus flavus Infection and Aflatoxin Production. Phytopath.96: 87-95. Coutos-Thevenot, P., Poinssot, B., Bonomelli, A., Yean, H., Breda, C., Buffard, D., Esnault, R., Hain, R., and Boulay, M. (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J. Exp. Bot. 52: 901-910. Crowell, D.N., John, M.E., Russell, D., and Amasino, R.M. (1992) Characterization of a stress-induced, developmentally regulated gene family from soybean. Plant Mol. Biol. 18: 459-466. De Grauwe, L., Vriezen, W.H., Bertrand, S., Phillips, A., Vidal, A.M., Hedden, P., and Van Der Straeten, D. (2007) Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana. Planta 226: 485-498. Despres, C., Subramaniam, R., Matton, D.P., and Brisson, N. (1995) The Activation of the potato PR-10a gene requires the phosphorylation of the nuclear factor PBF-1. Plant Cell 7: 589-598. Dubos, C., and Plomion, C. (2001) Drought differentially affects expression of a PR-10 protein, in needles of maritime pine (Pinus pinaster Ait.) seedlings. J. Exp. Bot. 52: 1143-1144. Ekramoddoullah, A.K.M., Yu, X., Sturrock, R., Zamani, A., and Taylor, D. (2000) Detection and seaonal expression pattern of a pathogenesis-related protein (PR-10) in Douglas-fir (Pseudotsuga menziesii) tissues. Physiol. Plant. 110: 240-247. Fernandes, H., Bujacz, A., Bujacz, G., Jelen, F., Jasinski, M., Kachlicki, P., Otlewski, J., Sikorski, M.M., and Jaskolski, M. (2009) Cytokinin-induced structural adaptability of a Lupinus luteus PR-10 protein. FEBS J. 276: 1596-1609. Flores, T., Alape-Giron, A., Flores-Diaz, M., and Flores, H.E. (2002) Ocatin. A novel tuber storage protein from the andean tuber crop oca with antibacterial and antifungal activities. Plant Physiol. 128: 1291-1302. Fristensky, B., Horovitz, D., and Hadwiger, L.A. (1988) cDNA sequences for pea disease resistance response genes. Plant Mol. Biol. 11: 713-715. Glazebrook, J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205-227. Hashimoto, M., Kisseleva, L., Sawa, S., Furukawa, T., Komatsu, S., and Koshiba, T. (2004) A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol. 45: 550-559. Hirano, K., Aya, K., Hobo, T., Sakakibara, H., Kojima, M., Shim, R.A., Hasegawa, Y., Ueguchi-Tanaka, M., and Matsuoka, M. (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol. 49: 1429-1450. Hu, X., Bidney, D.L., Yalpani, N., Duvick, J.P., Crasta, O., Folkerts, O., and Lu, G. (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol. 133: 170-181. Huang, J.C., Chang, F.C., and Wang, C.S. (1997) Characterization of a lily tapetal transcript that shares sequence similarity with a class of intracellular pathogenesis-related (IPR) proteins. Plant Mol. Biol. 34: 681-686. Izhaki, A., Borochov, A., Zamski, E., and Weiss, D. (2002) Gibberellin regulates post-microsporogenesis processes in petunia anthers. Physiol. Plant 115: 442-447. Itzhaki, H., | 摘要: | 在百合花粉成熟期和花粉管生長期間,Rop基因會受乾燥和離層酸訊息傳遞調控,當把未成熟的花藥/花粉進行乾燥處理和外加不同濃度的離層酸處理時,LLP-Rop1基因會降低其mRNA的累積,而LLP12-2,一個Rop-interactive CRIB motif-containing (RIC)基因則會增加其mRNA的累積;利用離層酸合成抑制劑norflurazon處理,也顯示離層酸會抑制LLP-Rop1,且會誘導LLP12-2基因表現。LLP-Rop1大量表現時,會抑制花粉管延長和造成管尖膨大的現象,CFP-LLP-Rop1分布在花粉管尖端的原生質膜上,Fluorescence resonance energy transfer (FRET)分析顯示,在花粉管中,活化的LLP-Rop1會和LLP12-2發生交互作用,但此交互作用可能不會受花粉乾燥的影響。當LLP12-2大量表現時,會抑制花粉萌發和花粉管生長,利用鈣離子流入過程的抑制劑LaCl3和EGTA及actin去極化藥物LatB處理,顯示LLP12-2會調控鈣離子流入的過程,而與actin的聚集無關。進一步以蛋白激酶抑制劑staurosporine或蛋白磷酸酶抑制劑okadaic acid處理,顯示LLP12-2調控鈣離子流入的過程與對staurosporine敏感的蛋白激酶和對okadaic acid敏感的蛋白磷酸酶無關。更進一步利用LLP12-2突變體來探討LLP12-2蛋白質的功能,顯示LLP12-2蛋白的N端扮演effector domain的功能而影響花粉萌發和花粉管生長 Here, we report unique desiccation-associated abscisic acid (ABA) signaling transduction through which the Rop (Rho GTPase of plants) gene is regulated during the stage of pollen maturation. Accumulation of the LLP-Rop1 transcript decreased its level of accumulation while LLP-12-2, a Rop-interactive CRIB motif-containing (RIC) transcript increased either by premature drying of developing anther/pollen or by the exogenous application of various concentrations of ABA during pollen maturation and tube growth. Application of norflurazon, an ABA biosynthesis inhibitor, also resulted in the downregulation of the LLP-Rop1 gene while the LLP-12-2 was upregulated by ABA. LLP-Rop1 overexpression inhibited tube elongation, caused tube expansion and the formation of a ballooned tip. CFP-LLP-Rop1 was localized to the cytoplasm having a greater intensity along the tube plasma membrane. Fluorescence resonance energy transfer (FRET) analysis of lily pollen tubes coexpressing CFP-LLP-Rop1 and YFP-LLP-12-2 demonstrated that LLP-12-2 is a target RIC protein of active LLP-Rop1, but the interaction between LLP-Rop1 and LLP-12-2 proteins is probably irrelevant of dehydration in the dried pollen. Overexpression of LLP12-2 inhibits pollen germination and tube growth. Studies with the germination inhibitors, the Ca2+ influx blocking agents LaCl3 and EGTA and an actin-depolymerizing drug, latrunculin B (LatB), suggested that LLP12-2 is involved in modulating calcium influx in the cytoplasm, but not actin assembly. When pollen germination and tube elongation were further examined by LaCl3 or EGTA, each with the addition of either staurosporine or okadaic acid, the results revealed that the involvement of LLP12-2 in modulation of calcium influx in the cytoplasm is independent of staurosporine-sensitive protein kinases and okadaic acid-sensitive phosphatases. The deletion mutant analysis of LLP12-2 indicated that the N-terminal region of LLP12-2 acts as an effector domain which regulates pollen germination and tube growth. |
URI: | http://hdl.handle.net/11455/36256 | 其他識別: | U0005-2107201018420000 |
Appears in Collections: | 生物科技學研究所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.