Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3625
DC FieldValueLanguage
dc.contributor劉正毓zh_TW
dc.contributorCheng-Yi Liuen_US
dc.contributor顏怡文zh_TW
dc.contributor吳子嘉zh_TW
dc.contributor林明澤zh_TW
dc.contributorMing-Tzer Linen_US
dc.contributor.advisor陳志銘zh_TW
dc.contributor.advisorChih-Ming Chenen_US
dc.contributor.author黃志傑zh_TW
dc.contributor.authorHuang, Chih-Chiehen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T05:32:19Z-
dc.date.available2014-06-06T05:32:19Z-
dc.identifierU0005-1107200714560400zh_TW
dc.identifier.citation[1]Rao R. Tummala, “Fundamentals of Microsystems Packaging”, McGraw-Hill, (2001). [2]”International Technology Roadmap for Semiconductors”, Semiconductor Industry Association, (1999). [3]H. B. Huntington, in “Diffusion in Solids:Recent Developments”, edited by A. S. Nowick and J. J. Burton, Academic Press, New York, p. 303-352, (1975). [4]P. S. Ho and T. Kwok, “Electromigration studies of aluminum-intermetallic structure” Extended Abstracts of the Conference on Solid State Devices and Materials Vol. 16 p. 55, (1984). [5]張淑如, “鉛對人體的危害”, 勞工安全衛生簡訊, 民國84 年,第12期, p.17-18。 [6]Lead-free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Science, Ann Arbor, Michigan, (1997). [7]V. I. Igoshev and J. I. Kleiman, “Creep phenolmena in lead-free solders”, J. Electron. Mater. Vol. 29, p.244, (2000). [8]J. Glazer, “Metallurgy of low temperature Pb-free solders for electronic assembly”, International Materials Reviews., Vol. 40(2), p.65, (1995). [9]T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, “Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization”, J. Appl. Phys., Vol. 90(9), p.4502, (2001). [10]J. W. Nah, K. Paik, J. O. Suh, and K. N. Tu, “Mechanism of electromigration-induced failure in the 97Pb-3Sn and 37Pb-63Sn composite solder joints”, J. Appl. Phys., Vol. 94(12), p.7560, (2003). [11]C. H. Raeder, L. E. Felton, D. B. Knorr, and D. Lee, “The effect of aging on microstructure, room temperature deformation, and fracture of Sn-Bi /Cu solder joints ”, J. Electron. Mater., Vol. 23(7), p.611, (1994). [12]H. B. Huntington and A. R. Grone, “Current-induced marker motion in gold wires”, J. Phys. Chem. Solids., Vol. 20(76), p76, (1961). [13]J. R. Black, IEEE Trans. on Electron Devices, ED-16, p.348, (1969). [14]C. K. Hu and J. M. E. Harper, “Copper interconnections and reliability”, Mater. Chem. Phys., Vol. 52, p.5, (1998). [15]K. Zeng and K. N. Tu, “ Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. & Eng. R, Vol. 38, p.55, (2002). [16]S. Brandenburg and S. Yeh, Proceedings of the Surface Mount Internatuonal Conference and Exposition, p.337, (1998). [17]C. Y. Liu, C. Chen, C. N. Liao and K. N. Tu, “Microstructure-electromigration correlateion in a thin stripe of eutectic SnPb solder stressesd between Cu electrodes”, Appl. Phys. Lett., Vol. 75, p.58, (1999). [18]W. J. Choi, E. C. C. Yeh, and K. N. Tu, “Electromigration of flip chip solder bump on Au/Ni(V)/Al thin film under bump metallization”, proceedings-electronic-components&Technology Conference p.1201 (2002). [19]H. Ye, C. Basaran, and D. C. Hopkins, IEEE Trans. on Components and Packaging Tech., Vol. 26, p.673, (2003). [20]J. R. Lloyd and J. J. Clement, “Thin Solid Films”, Vol. 262, p.135, (1995). [21]K. N. Tu, “Recent advances on electromigration in very-large-scale-integration of interconnects”, J. Appl. Phys., Vol. 94(9), p.5451, (2003). [22]C. Y. Liu, Chih Chen, and K. N. Tu, “Electromigration in Sn-Pb solder stripes as a function of alloy compositeon”, J. Appl. Phys., Vol. 88, p.5703, (2000). [23]C. C. Lu, S. J. Wang, and C. Y. Liu, “Electromigration studies on Sn(Cu) alloy lines”, Journal of Electronic Materials, Vol. 32(12), p. 1515, (2003). [24]Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in eutectic SnPb solder lines”, J. Appl. Phys.,Vol. 89, 4332, (2001). [25]S. W. Chen and C. M. Chen, “Electromigration Effects upon Interfacial Reactions”, JOM, Vol. 55(2), p.62 (2003) [26]R. Agarwal and K. N. Tu, “Electromigration in eutectic tin-lead solder lines at device temperature”, Proceedings of the 10th International Symposium on Advanced Packaging Materials, Irvine, CA, p.16 (2005). [27]R. Agarwal, Shengquan E. Ou, and K. N. Tu, “Electromigration and critical product in eutectic SnPb solder lines at 100℃”, J. Appl. Phys., Vol. 100, 024909, (2006). [28]J. Y. Choi, S. S. Lee, J. M. Paik, and Y. C. Joo, “Electromigration behavior of eutectic SnPb solder”, J. Appl. Phys., Vol. 41, p. 7487 (2002). [29]Y. C. Hsu, C. K. Chou, and Chih Chen, “Electromigration in Pb-free SnAg3.8Cu0.7 solder stripes”, J. Appl. Phys., Vol. 98, 033523 (2005). [30]Y. T. Yeh, C. K. Chou, Y. C. Hus, and Chih Chen, “Threshold current density of electromigration in eutectic SnPb solder”, Appl. Phys. Lett., Vol. 86, 203504 (2005). [31]C. K. Chou, Y. C. Hsu, and Chih Chen, “Study of electromigration in eutectic SnPb solder stripes using the edge displacement method”, J. Electron. Mater., Vol. 35(8), p.1655 (2006). [32]M. S. Yoon, S. B. Lee, and Y. C. Joo, “Relationship between edge drift and atomic migration during electromigration of eutectic SnPb lines”, J. Appl. Phys., Vol. 100, 033715 (2006). [33]Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, “Electromigration failure in flip chip solder joints due to rapid dissolution of copper”, J. Mater. Res., Vol. 18(11), p.2544 (2003). [34]Y. H. Hsiao, Y. C. Chuang, and C. Y. Liu, “Prevention of electromigration-induced Cu pad dissolution by using a high electromigration-resistance ternary Cu-Ni-Sn layer”, Scripta. Materialia., Vol. 54, p.661, (2006). [35]C. M. Tsai, Y. L. Lin, J. Y. Tsai, Yi. Shao. Lai, and C. R. Kao, “Local melting induced by electromigration in flip-chip solder joints”, J. Electron. Mater., Vol. 35(5), p1005 (2006). [36]C. M. Tsai, Y. S. Lai, Y. L. Lin, C. W. Chang, and C. R. Kao, “In-situ observation of material migration in flip-chip solder joints under current stressing”, J. Electron. Mater., Vol. 35(10), p1781 (2006). [37]D. Gupta, K. Vieregge, and W. Gust, “Interface diffusion in eutectic Pb-Sn solder”, Acta Mater. 47(1), p5 (1999). [38]Albert. T. Wu, A. M. Guask, K. N. Tu, and C. R. Kao, “Electromigrationinduced grain rotation in anisotropic conducting beta tin”, Appl. Phys. Lett. Vol. 86, 241902 (2005). [39]W. J. Choi, E. C. C. Yeh, and K. N. Tu, “Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization”, J. Appl. Phys., Vol. 94(9), p5665 (2003). [40]Q. L. Yang and J. K. Shang, “Interfacial segregation of Bi during current stressing of Sn-Bi/Cu solder interconnect”, J. Electron. Mater., Vol. 34(11), p.1363 (2005). [41]L. T. Chen and C. M. Chen, “Electromigration study in the eutectic SnBi solder joint on the Ni/Au metallization”, J. Mater. Res., Vol. 21, No. 4, p.962 (2006). [42]M. S. Yoon, M. K. Ko, O. H. Kim, Y. B. Park, W. D. Nix, and Y. C. Joo, “In-situ observation of electromigration in eutectic SnPb solder line: atomic migration and hillock formation”, J. Electron. Mater., Vol. 36, 11, p562 (2007). [43]H. C. Yu, S. H. Liu, and C. Chen, “Study of electromigration in thin tin film using edge displacement method”, J. Appl. Phys., Vol. 94, 013540 (2005). [44]周重光碩士論文, “利用邊緣移動技術研究共晶銲錫之電遷移”, 交通大學材料所 (2004)。 [45]H. W. Maio and J. G. Duh, Mater, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Chem. Phys., Vol. 71(2), p.255 (2001). [46]D. A. Porter and K. E. Easterling , “Phase transformations in metals and alloys”, UK: Chapman&Hall, p.315,(1992). [47]K. N. Tu, ”Electromigration in stressed thin film”,Phys. Rev. B45, p.1409 (1992). [48]Binary alloy phase diagrams, ed. T. B. Massalski, (Materials Park, OH:ASM Intl., (1990). [49]M. Shimoji, Liquid Metals : An Introduction to the Physics and Chemistry of Metals in the liquid state(London, Academic Press,1977).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3625-
dc.description.abstract在無鉛化的趨勢下,傳統錫鉛銲料將被取代,共晶錫鉍銲料(Sn-58wt%Bi)為低溫銲料,是相當具有潛力的無鉛銲料之一。本研究主要利用矽基材上沈積銅/鉭薄膜,使用黃光微影、蝕刻等製程,製備所需的樣品圖形,並將銲料回銲於試片上,接著施以各種不同電流密度,探討電遷移效應對共晶錫鉍銲料微結構變化之影響。此外,共晶錫鉍銲料在高溫下存在微結構的不穩定性,容易發生嚴重的晶粒粗化而導致不均勻的相分佈,進而造成銲料機械性質的降低。文獻中曾提及銅的添加可以有效解決晶粒嚴重粗化的問題[45],因此本研究亦針對添加1wt%Cu即Sn-57wt%Bi-1wt%Cu之銲料進行電遷移之實驗。此外,亦針對0.5wt%銀的添加即Sn-57.5wt%Bi-0.5wt%Ag銲料進行相同之研究,瞭解微量銅、銀添加之影響。 在有效電流密度1.3×104A/cm2、溫度85℃下進行為期24~240小時之反應,另外亦進行一組未通電之熱處理實驗,從結果中發現在熱處理實驗中添加1wt%Cu明顯降低粗化速率,從2.8下降至0.5μm3/h,在電流應力影響下Cu的添加也可降低晶粒的粗化,不過卻會增強電遷移效應的影響,造成更多的鉍原子在陽極端累積。在7.3×104A/cm2之高電流密度下,突起物及孔洞的成長,分別在陽極端及陰極端觀察到,其中以鉍原子為主要的擴散物質,錫為次要擴散物質。另外發現添加0.5wt%Ag至共晶錫鉍銲料中,在銲料中生成之介金屬相Ag3Sn,於固態熱處理期間,並不會減緩晶粒的粗化,但在電流應力下,Ag3Sn可阻擋鉍原子往陽極端移動,進而在陽極端有較少量的鉍原子累積。zh_TW
dc.description.abstractDue to the requirement of lead-free industry, the traditional Sn-Pb solder will soon be replaced. The eutectic Sn-58Bi solder alloy is one of the potential low melting temperature lead-free solders. The subject of this study is to investigate the electromigration effects on the eutectic Sn-Bi solder. By using the lithographic and etching techniques, the test sample is prepared by depositing a bilayer of Cu/Ta thin stripe on an oxidized Si substrate, followed by reflowing a tiny solder piece on the Cu stripe surface. After a careful polishing process, a thin solder stripe is fabricated. The solder stripe is then stressed by different current densities, and after stressing the microstructural evolution of the solder stripe is examined. Three solder compositions are used, i.e. Sn-58wt%Bi, Sn-57wt%Bi-1wt%Cu, and Sn-57.5wt%Bi-0.5wt%Ag. The results of the last two solders can be used to understand the effects of Cu or Ag addition on electromigration. Experimental results indicate that the addition of 1 wt%Cu can effectively reduce the grain coarsening rate of the SnBi solder from 2.8 to 0.5 m3/h. However, the electromigration effect is enhanced in the SnBi solder stressed by 1.3×104 A/cm2 at 85℃. More Bi atoms accumulate at the anode side. In addition to the migration of Bi at higher current density, 7.3×104 A/cm2, the migration of Sn is also observed, and the Sn migration takes place after the Bi migration. It is found that doping of 0.5 wt%Ag in the eutectic SnBi solder leads to the formation of Ag3Sn IMC. No noticeable retardant effect on grain coarsening rate is found in the Ag-doped solder. But under current stressing, the large-sized Ag3Sn IMC can hinder the movement of the Bi atoms, which results in a small amount of the mass accumulation of Bi at the anode.en_US
dc.description.tableofcontents謝誌 I 摘要 ΙI 英文摘要 III 目錄 IV 圖目錄 V 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 電遷移 4 2.2 電遷移理論 5 2.3 電遷移對銲料微結構的影響 6 2.3.1 薄膜銲線 6 2.3.2 覆晶銲點 27 2.3.3 共晶Sn-Bi銲料之電遷移行為 39 第三章 實驗方法 44 3.1 銲料合金製備 44 3.2 樣品製備 45 3.3 電遷移實驗 49 第四章 結果與討論 52 4.1 Cu添加對共晶Sn-58wt%Bi銲料電遷移行為之影響 52 4.2 Ag添加對共晶Sn-58wt%Bi銲料電遷移行為之影響 61 4.3不同電流密度下Ag與Cu的添加對共晶Sn-Bi銲料電遷移行為之影響 76 4.3.1不同電流密度下Sn-58wt%Bi銲料電遷移之行為 76 4.3.2 不同電流密度下Sn-57.5wt%Bi-0.5wt%Ag銲料電遷移之行為80 4.3.3不同電流密度下Sn-57wt%Bi-1wt%Cu銲料電遷移之行為 83 第五章 結論 86 第六章 參考文獻 87zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1107200714560400en_US
dc.subjectelectromigrationen_US
dc.subject電遷移zh_TW
dc.subjectgrain coarseningen_US
dc.subjectmicrostructureen_US
dc.subject晶粒粗化zh_TW
dc.subject微結構zh_TW
dc.title添加微量銅或銀元素對共晶錫鉍無鉛銲料電遷移之影響zh_TW
dc.titleEffect of small amount of copper or silver doping on electromigration of eutectic SnBi solderen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.