Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36268
標題: 阿拉伯芥種子萌發及後萌發時期RNA解旋酶突變株呈現對葡萄糖和離層酸高度敏感之特性
The Arabidopsis RNA helicase mutant exhibits glucose- and ABA- hypersensitivity during seed germination and post-germination
作者: 陳韻竹
Chen, Yun-Chu
關鍵字: Arabidopsis DEAD-box RNA helicase mutant;阿拉伯芥DEAD-box RNA解旋酶突變株;glucose-hypersensitivity;ABA-hypersensitivity;seed germination;post-germination;葡萄糖高敏感性;離層酸高敏感性;種子萌發;後萌發
出版社: 生物科技學研究所
引用: 楊靜瑩。2006。擬南芥轉殖株中百合LLA23蛋白參與離層酸和葡萄糖訊息傳遞及耐旱抗鹽特性。國立中興大學博士論文。 Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148-2152. Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P. (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14:2085-2096. Aubourg S, Kreis M, Lecharny A. (1999) The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res. 27:628-636. Benz J, Trachsel H, Baumann U. (1999) Crystal structure of ATPase domain of translation initiation factor eIF4A from Saccharomyces cerevisiae-the prototype of the DEAD box protein family. Structure Fold. Des. 7:671-679. Berthelot K, Muldoon M, Rajkowitsch L, Hughes J, McCarthy JE. (2004) Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. Mol. Microbiol. 51:987-1001. Bhalerao RP, Salchert K, Bako L, Okresz L, Szabados L. (1999) Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proc. Natl. Acad. Sci. U. S. A. 96:5322-27. Bizebard T, Ferlenghi I, Iost I, Dreyfus M. (2004) Studies on three E. coli DEAD-box helicases point to an unwinding mechanism different from that of model DNA helicases. Biochemistry 43:7857-7866. Boudet N, Aubourg S, Toffano-Nioche C, Kreis M, Lecharny A. (2001) Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res. 11:2101-214. Brocard IM, Lynch TJ, Finkelstein RR. (2002) Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar,and stress response. Plant Physiol. 129:1533-1543. Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR. (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE 8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16:406-421. Carmel AB, Matthews BW. (2004) Crystal structure of the BstDEAD N terminal domain: a novel DEAD protein from Bacillus stearothermophilus. RNA 10:66-74. Caruthers JM, Johnson ER, McKay DB. (2000) Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl. Acad. Sci. U. S. A. 97:3080-3085. Carvalho RF, Carvalho SD, Duque P. (2010) The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol. 154:772-783. Chan CC, Dostir J, Diem D, Feng W, Mann M, Rappsilber J, Dreyfuss G. (2004) eIF4AIII is a novel component of the exon junction complex. RNA 10:200-209. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539-544. Charollais J, Pflieger D, Vinh J, Dreyfus M, Iost I. (2003) The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 48:1253-1265. Charollais J, Dreyfus M, Iost I. (2004) CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res. 32:2751-2759. Chen JY, Stands L, Staley JP, Jackups RR Jr, Latus LJ, Chang TH. (2001) Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol. Cell 7:227–232. Chen G, Guo X, Lv F, Xu Y, Gao G. (2008) p72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein. Proc. Natl. Acad. Sci. U. S. A. 105: 4352-4357. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723-2743. Cho YH, Yoo SD, Sheen J. (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579-589. Chung E, Cho CW, Yun BH, Cho HK, So HA, Lee SW, Lee JH. (2009) Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature and high salinity stress. Gene 443:91-99. Claeyssen E, Rivoal J. (2007) Isozymes of plant hexokinase: occurrence, properties and functions. Phytochem. 68:709-731. Cordin O, Banroques J, Tanner NK, Linder P. (2006) The DEAD box protein family of RNA helicases . Gene 367:17-37. Dekkers BJ, Schuurmans JA, Smeekens SC. (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218:579-588. Dekkers BJ, Schuurmans JA, Smeekens SC. (2008) Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol. Biol. 67:151-167. de la Cruz J, Kressler D, Linder P. (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 24:192-198. Fairman-William ME, Guenther UP, Jankowsky E. (2010) SF1 and SF2 helicases. Curr. Opin. Struct. Biol. 20:313-324. Ferraiuolo, MA, Lee CS, Ler LW, Hsu JL, Mattioli MC, Luo, Reed R, Sonenberg N. (2004) A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl. Acad. Sci. U. S. A. 101:4118-4123. Finkelstein RR, Lynch TJ. (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599-609. Fuller-Pace FV, Nicol SM, Reid AD, Lane DP. (1993) DbpA: a DEAD box protein specifically activated by 23S rRNA. EMBO J. 12:3619-3626. Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P. (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117-1126. Gibson SI, Laby RJ, Kim D. (2001) The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem. Biophys. Res. Commun. 280:196-203. Gibson SI. (2005) Control of plant development and gene expression by sugar signaling. Curr. Opin. Plant Biol. 8:93-102. Gillian AL, Svaren J. (2004) The Ddx20/DP103 DEAD box protein represses transcriptional activation by Egr2/Krox-20. J. Biol. Chem. 279:9056-9063. Gorbalenya AE, Koonin EV. (1993) Helicases: amino acid sequence comparisons and structure–function relationships. Curr. Opin. Struct. Biol. 3:419-429. Graham IA, Denby KJ, Leaver CJ. (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6:761-772. Granot D. (2007) Role of tomato hexose kinases. Funct. Plant Biol. 34:564-570. Grifo JA, Abramson RD, Satler CA, Merrick WC. (1984) RNA stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259:8648-8654. Huang Y, Li CY, Pattison DL, Gray WM, Park S, Gibson SI. (2010) SUGAR-INSENSITIVE3, a RING E3 ligase, is a new player in plant sugar response. Plant Physiol. 152:1889-1900. Huang CK, Huang LF, Huang JJ, Wu SJ, Yeh CH, Lu CA. (2010a) A DEAD-Box protein, AtRH36, is essential for female gametophyte development and is involved in rRNA biogenesis in Arabidopsis. Plant Cell Physiol. 51:694-706. Huang CK, Yu SM, Lu CA. (2010b) A rice DEAD-box protein, OsRH36, can complement an Arabidopsis atrh36 mutant, but cannot functionally replace its yeast homolog Dbp8p. Plant Mol. Biol. 74:119-128. Huang TS, Wei T, Laliberte JF, Wang A. (2009) A host RNA Helicase-Like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the Virus accumulation complex, and is essential for infection. Plant Physiol. 152:255-266. Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S. (2000) The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J. 23:577-585. Kang JY, Choi HI, Im MY, Kim SY. (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343-357. Kant P, Kant S, Gordo M, Shaked R, Barak S. (2007) STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate arabidopsis responses to multiple abiotic stresses. Plant Physiol. 145:814-830. Karve A, Rauh BL, Xiaoxia X, Muthugapatti K, Meagher RB, Sheen J, Moore BD. (2008) Expression and evolutionary features of the hexokinase gene family in Arabidopsis. Planta 228:411-425. Koch KE. (1996) Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:509-540. Koroleva OA, Calder G, Pendle AF, Kim SH, Lewandowska D, Simpson CG, Jones IM, Brown JWS, Shawa PJ. (2009) Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell 21:1592-1606. Korolev S, Hsieh J, Gauss GH, Lohman TM, Waksman G. (1997) Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90:635-647. Kossen K, Uhlenbeck OC. (1999) Cloning and biochemical characterization of Bacillus subtilis YxiN, a DEAD protein specifically activated by 23S rRNA: delineation of a novel sub-family of bacterial DEAD proteins. Nucleic Acids Res. 27:3811-3820. Krapp A, Hofmann B, Schäfer C, Stitt M. (1993) Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the sink regulation of photosynthesis? Plant J. 3:817-828. Laby RJ, Kincaid MS, Kim D, Gibson SI. (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 23:587-596. Laxmi A, Paul LK, Peters JL, Khurana JP. (2004) Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity. Plant Mol. Biol. 56:185-201. Lloyd JC, Zakhleniuk OV. (2004) Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J. Exp. Bot. 55:1221-30. Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski PP. (1989) Birth of the D-E-A-D box. Nature 337:121-122. Linder P. (2003) Yeast RNA helicases of the DEAD-box family involved in translation initiation. Biol. Cell 95:157-167. Mingam A, Toffano-Nioche C, Brunaud V, Boudet N, Kreis M, Lecharny A. (2004) DEAD-box RNA helicases in Arabidopsis thaliana: establishing a link between quantitative expression, gene structure and evolution of a family of genes. Plant Biotechnol J. 2:401-415. Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J. (1998) Functional dissection of a sugar-repressed alpha-amylase gene (RAmy1 A) promoter in rice embryos. FEBS Lett. 423:81-85. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J. (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332-336. Nicol SM, Fuller-Pace FV. (1995) The “DEAD box” protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA. Proc. Natl. Acad. Sci. U. S. A. 92:11681-11685. Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T. (2007) ABA-hypersensitive germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J. 50:935-949. Owttrim GW. (2006) RNA helicases and abiotic stress. Nucleic Acids Res. 167: 3220-3230. Palacios IM, Gatfield D, St Johnston D, Izaurralde E. (2004) An eIF4AIII containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427:753-757. Perata P, Matsukura C, Vernieri P, Yamaguchi J. (1997) Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9:2197-2208. Price J, Li TC, Kang SG, Na JK, Jang JC. (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol. 132:1424-1438. Price J, Laxmi A, St Martin, SK, Jang JC. (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128-2150. Ramon M, Rolland F, Sheen J. (2008) Sugar Sensing and Signaling. The Arabidopsis Book 6:e0117 doi:10.1199/tab.0117. Reed R, Hurt E. (2002) A conserved mRNA export machinery coupled to premRNA splicing. Cell 108:523-531. Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JA. (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541-1544. Rocak S, Linder P. (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell. Biol. 5:232-241. Rocak S, Emery B, Tanner, NK, Linder P. (2005) Characterization of the ATPase and unwinding activities of the yeast DEAD-box protein Has1p and the analysis of the roles of the conserved motifs. Nucleic Acids Res. 33:999-1009. Rogers Jr, GW KomarAA, Merrick WC. (2002) eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72:307-331. Rolland F, Baena-Gonzalez E, Sheen J. (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant. Biol. 57:675-709. Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW. (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J. 26:421-433. Rook F, Bevan MW. (2003) Genetic approaches to understanding sugar- response pathways. J. Exp. Bot. 54:495-501. Shi H, Cordin O, Minder CM, Linder P, Xu RM. (2004) Crystal structureof the human ATP-dependent splicing and export factor UAP56. Proc.Natl. Acad. Sci. U. S. A. 101:17628-17633. Shibuya T, Tange TO, Sonenberg N, Moore MJ. (2004) eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsensemediated decay. Nat. Struct. Mol. Biol. 11:46-351. Silverman E, Edwalds-Gilbert G , Lin RJ. (2003) DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene 312:1-16. Singleton MR, Dillingham MS, Wigley DB. (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76:23-50. Sonenberg N, Dever TE. (2003) Eukaryotic translation initiation factors and regulators. Curr. Opin. Struct. Biol. 13:56-63. Stevens SW, Ryan DE, Ge HY, Moore RE, Young MK, Lee TD, Abelson J. (2002) Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol. Cell 9:31-44. Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J.(2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18: 3415-3428. Stonebloom S, Burch-Smith T, Kima I, Meinke D, Mindrinos M, Zambryski P. (2009) Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc.Natl. Acad. Sci. U. S. A. 106:17229-17234. Story RM, Steitz TA. (1992) Structure of the recA protein–ADP complex. Nature 355:374-376. Story RM, Li H, Abelson JN. (2001) Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc. Natl. Acad. Sci. U. S. A. 98:1465-1470. Staley JP, Guthrie C. (1999) An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 3:55-64. Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J. (2006). KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18:3415-3428. Subramanya HS, Bird LE, Brannigan JA, Wigley DB. (1996) Crystal structure of a DExx box DNA helicase. Nature 384:379-383. Sze H, Schumacher K, Muller ML, Padmanaban S, Taiz L. (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase. Trends Plant Sci. 7:157-161. Tanner NK. (2003) The newly identified Q motif of DEAD box helicases is involved in adenine recognition. Cell Cycle 2:18-19. Theis K, Chen PJ, Skorvaga M, Van Houten B, Kisker C. (1999) Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J. 18:6899-6907. Thibaud MC, Gineste S, Nussaume L, Robaglia C. (2004) Sucrose increases pathogenesis-related PR-2 gene expression in Arabidopsis thaliana through an SA dependent but NPR1-independent signaling pathway. Plant Physiol. Biochem. 42:81–88. Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB. (1999) Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97:75-78. Weirich CS, Erzberger JP, Berger JM, Weis K. (2004) The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 16:749-760. Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV. (2004) The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol. Biol. 5:11-36. Yanagisawa S, Yoo SD, Sheen J. (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521-525. Yang P, Fu H, Walker J, Papa CM, Smalle J, Ju YM, Vierstra RD. (2004) Purification of the Arabidopsis 26S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J. Biol. Chem. 279:6401-6413. Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J. (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789-795. Yuan K, Wysocka-Diller J. (2006) Phytohormone signalling pathways interact with sugars during seed germination and seedling development. J. Exp. Bot. 57:3359-3367. XiaoW, Sheen J, Jang JC. (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol. Biol. 44:451-461. Xu YZ, Newnham CM, Kameoka S, Huang T, Konarska MM, Query CC. (2004) Prp5 bridges U1 and U2 snRNPs and enables stable U2 snRNPassociation with intron RNA. EMBO J. 23:376-385. Zhao R, Shen J, Green MR, MacMorris M, Blumenthal T. (2004) Crystal structure of UAP56, a DExD/H-box protein involved in pre-mRNA splicing and mRNA export. Structure 12:1373-1381. Zhou L, Jang JC, Jones TL, Sheen J. (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose insensitive mutant. Proc. Natl. Acad. Sci. U. S. A. 95:10294-10299.
摘要: 
為了適應多變環境,高等植物會感受逆境並調節其生長和發育。在植物的發育過程,葡萄糖除了提供養份之外,也扮演十分重要的訊息傳遞角色。本實驗室利用 3% 葡萄糖生長環境篩選數千個阿拉伯芥 T-DNA 插入突變株,得到數個突變株具有對葡萄糖高敏感之特性。本研究針對其中一個對葡萄糖高敏感之 rh57-1 突變株進行研究。AtRH57 的 cDNA 全長為 2049 bp,可轉譯出 541 個胺基酸,預測分子量為 60.9 kDa。蛋白質序列比對結果顯示指出,AtRH57 為第二類的 DEAD-box RNA 解旋酶,具兩個特性:一為演化樹分析屬於獨立分支ㄧ群,與其他 DEAD-box RNA 解旋酶蛋白質序列無全部或部份相同;二為與其他 DEAD-box RNA 解旋酶基因至少催化功能區中有一段相同序列之前含內含子。由反轉錄聚合酶鏈鎖反應 (RT-PCR) 分析,發現 AtRH57 在阿拉伯芥的每個器官皆有表現,其中以根的表現量最多,以腋生葉和果莢的 AtRH57 表現量較低。在 3% 與 4.5% 葡萄糖逆境下生長九天,野生株 (Col-0) 和 rh57-1 突變株的種子萌發率並無明顯差異。但相較於野生株,rh57-1 突變株有較低子葉綠化和子葉擴張率,且 rh57-1 突變株之胚軸與根的長度均明顯被抑制,顯示 rh57-1 對於葡萄糖具有高敏感性,且不是高濃度下的葡萄糖滲透壓造成。兩個不同插入位點 T-DNA 之 rh57-2 和 rh57-3 突變株,也與 rh57-1 突變株在葡萄糖逆境下的外表型相符合,證明 AtRH57 基因的確受到破壞而導致 rh57-1 突變株對葡萄糖具高敏感性。即時定量反轉錄聚合酶鏈鎖反應 (real-time PCR) 分析 4.5% 葡萄糖逆境中,rh57-1 突變株的醣類調節相關基因表現,發現與野生株相比確實有明顯改變。此外,rh57-1 的種子萌發和早期植株發育也對離層酸具高度敏感性。添加離層酸抑制劑 fluridone 到不同濃度葡萄糖培養基中,發現 rh57-1 子葉擴張皆有明顯恢復。高濃度葡萄糖逆境下,rh57-1 突變株離層酸含量變化的確比野生株明顯高出兩倍。且 rh57-1 突變株內之離層酸訊息傳遞相關基因 ABI3、ABI4 和 ABI5 明顯受到誘導。最後,利用阿拉伯芥原生質體進行 AtRH57 蛋白質定位分析,證實 EGFP-AtRH57 以及 AtRH57- EGFP 的融合蛋白皆位於細胞核內。

To cope with changing environment, higher plants can sense sugar levels and accordingly adjust their growth and development. In addition to supply nutrients, glucose plays an important signaling role in different developmental processes in plants and other organisms. Thousands of Arabidopsis T-DNA insertion mutants grown at 3% glucose condition have been screened. Subsequently, several mutants exhibiting glucose hypersensitivity were obtianed. One of glucose hypersensitive muntants, rh57-1, was selected for further investigations. The full length AtRH57 cDNA contains 2049 bp encoding a polypeptide of 541 amino acids with a calculated molecular mass of 60.9 kDa. Sequence alignment revealed that AtRH57 is a member of Class II DEAD-box RNA helicase family because this class exhibits (1) Phylogenetic tree analysis indicated that completely identical or partially identical protein sequence with other DEAD-box protein;(2) AtRH57 does not share at least one intron at an identical position with one other gene of the class. Reverse transcription (RT-PCR) analysis showed that AtRH57 mRNA was present in all the organ, and the expression was highest in root and lower in cauline leaf and silique. When grown in the presence of either 3% or 4.5% glucose concentration for 9 d, no seed germination rate of the rh57-1 mutant did not change when compared with wild-type (WT; Col-0) plants. However, the rh57-1 mutant exhibited impaired cotyledon greening and expansion. Moreover, the hypocotyl and root of rh57-1 mutant are singnificantly inhibited. No developmental difference between wild-type and rh57-1 mutant plants was observed when grown at the same concentration mannitol, indicating that the growth impairment of rh57-1 exhibits glucose hypersensitivity, but the impairment is not caused by osmotic stress. The rh57-2 and rh57-3 seedlings exhibited phenotypes similar to rh57-1 on the medium supplemented with 4.5% glucose, further confirm the disruption of the AtRH57 gene resulting in the rh57-1 mutant hypersensitive to glucose. Real-time PCR analysis indicated that some of these glucose-responsive genes were singnificantly altered in rh57-1 mutant seedlings in the presence of 4.5% glucose conditions. The rh57-1 seed germination and early seedling development also exhibited sensitivity to ABA. The glucose inhibition of cotyledon expansion of rh57-1 was markedly rescued when various concentration of glucose supplymented with 1 μM fluridone. In the presence of 4.5% glucose, variations of ABA content in the rh57-1 seedling increased 2-fold more than that in WT. Real-time PCR analysis revealed several key genes involved in the ABA signaling genes were induced by glucose in the rh57-1 mutant, such as ABI3, ABI4 and ABI5. Finally, subcellular localization of the AtRH57 in Arabidopsis protoplast analysis showed that the EGFP-AtRH57 and AtRH57-EGFP fusion protein were localized to the nucleus.
URI: http://hdl.handle.net/11455/36268
其他識別: U0005-0208201113514300
Appears in Collections:生物科技學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.