Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/36273
標題: | 利用桿狀病毒表現系統製備具免疫原性的H1亞型流感病毒HA似病毒顆粒 Production of Immunogenic Baculovirus-Derived H1-subtype Influenza Hemagglutinin Virus-Like Particles |
作者: | 曾垣賓 Tseng, Yuan-Pin |
關鍵字: | influenza;流感病毒;Virus-like particles;VLP;Baculvirus;vaccine;Hemagglutinin;HA;H1N1;似病毒顆粒;桿狀病毒;疫苗;血球凝集素 | 出版社: | 生物科技學研究所 | 引用: | 1. Harris, A., et al., Influenza virus pleiomorphy characterized by cryoelectron tomography. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(50): p. 19123-19127. 2. Sieczkarski, S.B. and G.R. Whittaker, Characterization of the host cell entry of filamentous influenza virus. Archives of virology, 2005. 150(9): p. 1783-1796. 3. Noori, M., et al., Construction of influenza virosome from influenza A H1N1 PR8. BMC Proceedings, 2011. 5(Suppl 1): p. P5. 4. Garcia-Sastre, A. and R.A. Medina, Influenza A viruses: new research developments. Nature Reviews Microbiology, 2011. 9(8): p. 590-603. 5. Digard, P. and A. Portela, The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. Journal of General Virology, 2002. 83: p. 723-734. 6. Yewdell, J.W., et al., A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 2001. 7(12): p. 1306-1312. 7. Chanturiya, A.N., et al., PB1-F2, an influenza A virus-encoded proapoptotic mitochondrial protein, creates variably sized pores in planar lipid membranes. Journal of virology, 2004. 78(12): p. 6304-6312. 8. Henkel, M., et al., The proapoptotic influenza A virus protein PB1-F2 forms a nonselective ion channel. PLoS One, 2010. 5(6): p. e11112. 9. Digard, P., et al., A complicated message: identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. Journal of Virology, 2009. 83(16): p. 8021-8031. 10. Fouchier, R.A.M., et al., Characterization of a novel influenza a virus hemagglutinin subtype (H16) obtained from black-headed gulls. Journal of Virology, 2005. 79(5): p. 2814-2822. 11. Ha, Y., et al., H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. EMBO Journal, 2002. 21(5): p. 865-875. 12. Medina, R.A. and A. Garcia-Sastre, Influenza A viruses: new research developments. Nature Reviews Microbiology, 2011. 9(8): p. 590-603. 13. Smith, G.J., et al., Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature, 2009. 459(7250): p. 1122-1125. 14. Skehel, J.J. and D.C. Wiley, Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annual review of biochemistry, 2000. 69: p. 531-569. 15. Gamblin, S.J. and J.J. Skehel, Influenza Hemagglutinin and Neuraminidase Membrane Glycoproteins. Journal of Biological Chemistry, 2010. 285(37): p. 28403-28409. 16. Baum, L.G. and J.C. Paulson, Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta histochemica. Supplementband, 1990. 40: p. 35-38. 17. Couceiro, J.N., J.C. Paulson, and L.G. Baum, Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus research, 1993. 29(2): p. 155-165. 18. Matrosovich, M.N., et al., Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology, 1997. 233(1): p. 224-234. 19. Rogers, G.N. and B.L. D''Souza, Receptor binding properties of human and animal H1 influenza virus isolates. Virology, 1989. 173(1): p. 317-322. 20. Schmitt, A.P. and R.A. Lamb, Influenza virus assembly and budding at the viral budozone. Virus Structure and Assembly, 2005. 64: p. 383-416. 21. Takeda, M., et al., Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(25): p. 14610-14617. 22. Brown, D.A. and J.K. Rose, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 1992. 68(3): p. 533-544. 23. Rossman, J.S. and R.A. Lamb, Influenza virus assembly and budding. Virology, 2011. 411(2): p. 229-236. 24. Bright, R.A., et al., Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine, 2007. 25(19): p. 3871-3878. 25. Safdar, A. and M.M. Cox, Baculovirus-expressed influenza vaccine. A novel technology for safe and expeditious vaccine production for human use. Expert opinion on investigational drugs, 2007. 16(7): p. 927-934. 26. Gerdil, C., The annual production cycle for influenza vaccine. Vaccine, 2003. 21(16): p. 1776-1779. 27. Cox, M.M.J. and D.K. Anderson, Production of a novel influenza vaccine using insect cells: protection against drifted strains. Influenza and Other Respiratory Viruses, 2007. 1(1): p. 35-40. 28. Palomares, L.A. and O.T. Ramirez, Challenges for the production of virus-like particles in insect cells: The case of rotavirus-like particles. Biochemical Engineering Journal, 2009. 45(3): p. 158-167. 29. Galarza, J.M., T. Latham, and A. Cupo, Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol, 2005. 18(1): p. 244-251. 30. Wen, Z.Y., et al., Immunization by influenza virus-like particles protects aged mice against lethal influenza virus challenge. Antiviral Research, 2009. 84(3): p. 215-224. 31. Quan, F.S., et al., Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. Journal of Virology, 2007. 81(7): p. 3514-3524. 32. Kang, S.M., et al., Induction of long-term protective immune responses by influenza H5N1 virus-like particles. PLoS One, 2009. 4(3): p. e4667. 33. Chen, B.J., et al., Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. Journal of Virology, 2007. 81(13): p. 7111-7123. 34. Lai, J.C., et al., Formation of virus-like particles from human cell lines exclusively expressing influenza neuraminidase. The Journal of general virology, 2010. 91(Pt 9): p. 2322-2330. 35. Vezina, L.P., et al., Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnology Journal, 2008. 6(9): p. 930-940. 36. Altmann, F., et al., Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconjugate Journal, 1999. 16(2): p. 109-123. 37. Tomiya, N., et al., Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells. Analytical biochemistry, 2001. 293(1): p. 129-137. 38. Chang, G.R.-L., et al., Production of immunogenic one-component avian H7-subtype influenza virus-like particles. Process Biochemistry, 2011. 46(6): p. 1292-1298. 39. De Wit, E., et al., A reverse-genetics system for Influenza A virus using T7 RNA polymerase. The Journal of general virology, 2007. 88(Pt 4): p. 1281-1287. 40. Wang, K., et al., Expression and purification of an influenza hemagglutinin--one step closer to a recombinant protein-based influenza vaccine. Vaccine, 2006. 24(12): p. 2176-2185. 41. Wu, C.Y., et al., Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS One, 2010. 5(3): p. e9784. 42. Hauser, C., et al., Mammalian Expression of Virus-Like Particles for Advanced Mimicry of Authentic Influenza Virus. PLoS One, 2010. 5(3): p. e9784. 43. World Health Organization WHO manual on animal influenza diagnosis and surveillance. 2002. p. 28-39. 44. O''Reilly, D.R., Miller, L. K., Luckow, V. A., Recombinant baculovirus expression vectors, a laboratory manual.1994, Oxford, UK: Oxford University Press. 45. Saito, T., et al., The effect of cell cycle on GFPuv gene expression in the baculovirus expression system. Journal of biotechnology, 2002. 93(2): p. 121-129. 46. Braunagel, S.C., et al., Autographa californica nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase. Virology, 1998. 244(1): p. 195-211. 47. Donaldson, M.S. and M.L. Shuler, Effects of long-term passaging of BTI-Tn5B1-4 insect cells on growth and recombinant protein production. Biotechnology Progress, 1998. 14(4): p. 543-547. 48. Dea, S., et al., Antigenic variant of swine influenza virus causing proliferative and necrotizing pneumonia in pigs. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 1992. 4(4): p. 380-392. 49. Yang, D.G., et al., Avian influenza virus hemagglutinin display on baculovirus envelope: Cytoplasmic domain affects virus properties and vaccine potential. Molecular Therapy, 2007. 15(5): p. 989-996. 50. Lipowsky, R., Domain-induced budding of fluid membranes. Biophysical journal, 1993. 64(4): p. 1133-1138. 51. Shen, J., J.P. Ma, and Q.H. Wang, Evolutionary Trends of A(H1N1) Influenza Virus Hemagglutinin Since 1918. PLoS One, 2009. 4(11): p. e7789. 52. Roldao, A., et al., Stochastic simulation of protein expression in the baculovirus/insect cells system. Computers & Chemical Engineering, 2008. 32(1-2): p. 68-77. 53. Maranga, L., T.F. Brazao, and M.J.T. Carrondo, Virus-like particle production at low multiplicities of infection with the baculovirus insect cell system. Biotechnology and Bioengineering, 2003. 84(2): p. 245-253. 54. Pan, Y.S., et al., Construction and characterization of insect cell-derived influenza VLP: cell binding, fusion, and EGFP incorporation. Journal of biomedicine & biotechnology, 2010. 2010: p. 506363. 55. Song, J.M., et al., Proteomic characterization of influenza H5N1 virus-like particles and their protective immunogenicity. Journal of proteome research, 2011. 10(8): p. 3450-3459. 56. Krammer, F., et al., Trichoplusia ni cells (High Five(TM)) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Molecular Biotechnology, 2010. 45(3): p. 226-234. 57. Krammer, F., et al., Swine-origin pandemic H1N1 influenza virus-like particles produced in insect cells induce hemagglutination inhibiting antibodies in BALB/c mice. Biotechnology Journal, 2010. 5(1): p. 17-23. 58. Pushko, P., et al., Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine, 2005. 23(50): p. 5751-5759. 59. Prel, A., G. Le Gall-Recule, and V. Jestin, Achievement of avian influenza virus-like particles that could be used as a subunit vaccine against low-pathogenic avian influenza strains in ducks. Avian Pathology, 2008. 37(5): p. 513-520. 60. Zhang, J., et al., Optimum infection conditions for recombinant protein production in insect cell (Bm5) suspension culture. Biotechnology progress, 1994. 10(6): p. 636-643. 61. Hitchman, R.B., et al., Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles. Biotechnology and bioengineering, 2007. 96(4): p. 810-814. 62. Lai, J.C., et al., Formation of virus-like particles from human cell lines exclusively expressing influenza neuraminidase. Journal of General Virology, 2010. 91(Pt 9): p. 2322-2330. 63. Pincus, S., et al., Release and stability testing programs for a novel virus-Like particle vaccine. BioPharm International, 2010: p. 26. 64. Opitz, L., et al., Sulfated membrane adsorbers for economic pseudo-affinity capture of influenza virus particles. Biotechnology and bioengineering, 2009. 103(6): p. 1144-1154. 65. Opitz, L., et al., Purification of cell culture-derived influenza virus A/Puerto Rico/8/34 by membrane-based immobilized metal affinity chromatography. Journal of virological methods, 2009. 161(2): p. 312-316. 66. Doong, S.R., et al., Strong and heterogeneous adsorption of infectious bursal disease VP2 subviral particle with immobilized metal ions dependent on two surface histidine residues. Analytical Chemistry, 2007. 79(20): p. 7654-7661. 67. Sagara, J. and A. Kawai, Identification of heat shock protein 70 in the rabies virion. Virology, 1992. 190(2): p. 845-848. 68. Hirayama, E., et al., Heat shock protein 70 is related to thermal inhibition of nuclear export of the influenza virus ribonucleoprotein complex. Journal of virology, 2004. 78(3): p. 1263-1270. 69. Haug, M., et al., The heat shock protein Hsp70 enhances antigen-specific proliferation of human CD4+ memory T cells. European journal of immunology, 2005. 35(11): p. 3163-3172. 70. Semenova, I.B., et al., [Complex of recombinant heat shock protein with lipopolysaccharide induces rapid protection of mice against Salmonella typhimurium and avirulent for humans avian influenza virus H5N2]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii, 2007(6): p. 54-57. 71. El Mezayen, R., et al., Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunology letters, 2007. 111(1): p. 36-44. 72. Parent, R., et al., The heat shock cognate protein 70 is associated with hepatitis C virus particles and modulates virus infectivity. Hepatology, 2009. 49(6): p. 1798-1809. 73. Zhang, S.X.X., Y. Han, and G.W. Blissard, Palmitoylation of the Autographa californica multicapsid nucleopolyhedrovirus envelope glycoprotein GP64: Mapping, functional studies, and lipid rafts. Journal of Virology, 2003. 77(11): p. 6265-6273. | 摘要: | 流感似病毒顆粒為近年來新一代的流感疫苗,具有類似真實病毒顆粒的外形及抗原性、不具病毒核酸等特點。本研究使用桿狀病毒表現系統在Hi-5昆蟲細胞株表現H1N1亞型A/PR/8/34流感病毒株的血球凝集素蛋白(HA),經由血球吸附試驗證實感染的細胞可表現具有功能的HA膜蛋白,並且胞外的培養基具有血球凝集現象,顯示部分的HA分子被釋放到胞外區域。以病毒感染複數(MOI)最適化試驗,得到細胞以MOI = 0.01感染72小時具有最佳的胞外HA產量,約為64 HAU /50μl (1.2 μg/ml)。在20~60% 蔗糖梯度超高速離心及以動態光散射分析結果證實被釋放到胞外HA分子為顆粒型態,其浮力密度介於1.17~1.20 g/cm3,平均粒徑為174 ± 7 nm。進一步以穿透式電子顯微鏡及免疫金標定證實所觀察到的似病毒顆粒確實含有HA。另一方面,以介質輔助雷射脫附游離-飛行時間式質譜儀 (MALDI/TOF) 分析HA似病毒顆粒分層的組成,發現除了HA蛋白外,還有來自細胞的HSP70、beta-tubulin和cytoplasmic actin以及來自桿狀病毒的gp64蛋白,這些蛋白有可能參與HA似病毒顆粒的釋出過程。動物免疫實驗證實BALB/c小鼠在免疫兩次含0.2 μg或2 μg HA的似病毒顆粒後,皆可產生高力價的血球凝集抑制(HI)抗體 ( >150倍)。綜合上述結果顯示利用桿狀病毒表現系統在Hi-5昆蟲細胞株表現H1N1亞型A/PR/8/34流感病毒株的血球凝集素蛋白可以形成具有免疫原性的HA似病毒顆粒且具有開發成為流感似病毒顆粒疫苗的潛力。 Influenza virus-like particles (VLPs) are prominent influenza vaccine candidates because of their similar morphologies and immunogenicities to authentic virions and lack of viral genetic materials. In this study, hemagglutinin (HA) of influenza A/PR/8/34 (H1N1) virus was expressed as a membrane protein, which conferred the infected Hi-5 cells with the function to agglutinate erythrocytes. Strikingly, the hemagglutination was also detectable in the medium, which suggested some HA molecules were released into extracellular environment. Multiplicity of infection (MOI) optimization showed that cells were infected with 0.01 MOI at 72 hours post infection has the highest titer of extracellular HA for 64 HAU/ 50μl (1.2 μg/ml). 20-60% sucrose density gradient ultracentrifugation and dynamic laser scattering analysis were conducted to demonstrate that these extracellular HA molecules were released in a particle form with the buoyant densities between 1.17-1.20 g/cm3 and average diameter of 174 ± 7 nm. The existence of VLPs formed by HA (HA-VLPs) was further confirmed by electron microscopy and immunogold labeling. On the other hand, cell-derived HSP 70, cytoplasmic actin and beta-tubulin and baculovirus gp64 protein were MALDI /TOF-identified in the same fraction of HA-VLPs, which suggested that these proteins might involve in the budding process of HA-VLPs. Animal immunization demonstrated that two doses of VLPs containing 0.2 μg or 2 μg HA can elicit high titers of hemagglutination inhibition (HI) antibody (>150) in all vaccinated BALB/c mice. Taken together, these results demonstrates that using recombinant baculovirus expression system to express influenza virus A/PR/8/34 (H1N1) HA in Hi-5 insect cells is capable to produce immunogenic HA-VLPs and indicate that HA-VLPs represent another promise influenza VLP vaccine candidate. |
URI: | http://hdl.handle.net/11455/36273 | 其他識別: | U0005-0702201201363200 |
Appears in Collections: | 生物科技學研究所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.