Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/36300
DC Field | Value | Language |
---|---|---|
dc.contributor | 林仁混 | zh_TW |
dc.contributor | Jen-Kun Lin | en_US |
dc.contributor | 楊寧蓀 | zh_TW |
dc.contributor | 陳瑞華 | zh_TW |
dc.contributor | 陳玉如 | zh_TW |
dc.contributor | 王升陽 | zh_TW |
dc.contributor | 吳永昌 | zh_TW |
dc.contributor | Ning-Sun Yang | en_US |
dc.contributor | Ruey-Hwa Chen | en_US |
dc.contributor | Yu-Ju Chen | en_US |
dc.contributor | Sheng-Yang Wang | en_US |
dc.contributor | Yang-Chang Wu | en_US |
dc.contributor.advisor | 徐麗芬 | zh_TW |
dc.contributor.advisor | Lie-Fen Shyur | en_US |
dc.contributor.author | 李慧玲 | zh_TW |
dc.contributor.author | Lee, Wai-Leng | en_US |
dc.contributor.other | 中興大學 | zh_TW |
dc.date | 2012 | zh_TW |
dc.date.accessioned | 2014-06-06T07:54:30Z | - |
dc.date.available | 2014-06-06T07:54:30Z | - |
dc.identifier | U0005-2507201122485600 | zh_TW |
dc.identifier.citation | References 1. Ferlay, J.; Shin, H. R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. M., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010, 127, 2893-2917. 2. Jemal, A.; Siegel, R.; Xu, J.; Ward, E., Cancer statistics, 2010. CA Cancer J Clin 2010, 60, 277-300. 3. Shin, H. R.; Joubert, C.; Boniol, M.; Hery, C.; Ahn, S. H.; Won, Y. J.; Nishino, Y.; Sobue, T.; Chen, C. J.; You, S. L.; Mirasol-Lumague, M. R.; Law, S. C.-K.; Mang, O.; Xiang, Y. B.; Chia, K. S.; Rattanamongkolgul, S.; Chen, J. G.; Curado, M. P.; Autier, P., Recent trends and patterns in breast cancer incidence among Eastern and Southeastern Asian women. Cancer Causes Control 2010, 21, 1777-85. 4. American Cancer Society. Breast Cancer Facts & Figures 2007-2008. Atlanta: American Cancer Society, Inc. 5. Gerber, B.; Freund, M.; Reimer, T., Recurrent breast cancer: treatment strategies for maintaining and prolonging good quality of life. Dtsch Arztebl Int 2010, 107, 85-91. 6. Vargo-Gogola, T.; Rosen, J. M., Modelling breast cancer: one size does not fit all. Nat Rev Cancer 2007, 7, 659-72. 7. Chabner, B. A.; Roberts, T. G., Jr., Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer 2005, 5, 65-72. 8. Liu, S. V.; Melstrom, L.; Yao, K.; Russell, C. A.; Sener, S. F., Neoadjuvant therapy for breast cancer. J Surg Oncol 2010, 101, 283-91. 9. Gianni, L.; Baselga, J.; Eiermann, W.; Porta, V. G.; Semiglazov, V.; Lluch, A.; Zambetti, M.; Sabadell, D.; Raab, G.; Cussac, A. L.; Bozhok, A.; Martinez-Agullo, A.; Greco, M.; Byakhov, M.; Lopez, J. J.; Mansutti, M.; Valagussa, P.; Bonadonna, G., Phase III trial evaluating the addition of paclitaxel to doxorubicin followed by cyclophosphamide, methotrexate, and fluorouracil, as adjuvant or primary systemic therapy: European Cooperative Trial in Operable Breast Cancer. J Clin Oncol 2009, 27, 2474-81. 10. Moulder, S.; Hortobagyi, G. N., Advances in the treatment of breast cancer. Clin Pharmacol Ther 2008, 83, 26-36. 11. Jordan, V. C., Chemoprevention of breast cancer with selective oestrogen-receptor modulators. Nat Rev Cancer 2007, 7, 46-53. 12. Musgrove, E. A.; Sutherland, R. L., Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 2009, 9, 631-43. 13. Mariani, G., New developments in the treatment of metastatic breast cancer: from chemotherapy to biological therapy. Ann. Oncol. 2005, 16, ii191-4. 14. Wang, T. H.; Wang, H. S.; Soong, Y. K., Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 2000, 88, 2619-28. 15. Orr, G. A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S. B., Mechanisms of Taxol resistance related to microtubules. Oncogene 2003, 22, 7280-95. 16. Gottesman, M. M.; Fojo, T.; Bates, S. E., Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002, 2, 48-58. 17. Mukai, H., Targeted therapy in breast cancer: current status and future directions. Jpn J Clin Oncol 2010, 40, 711-6. 18. Iwata, H., Neo(adjuvant) trastuzumab treatment: current perspectives. Breast Cancer 2009, 16, 288-94. 19. Oakman, C.; Pestrin, M.; Cantisani, E.; Licitra, S.; DeStefanis, M.; Biganzoli, L.; Di Leo, A., Adjuvant chemotherapy--the dark side of clinical trials. Have we learnt more? Breast 2009, 18, S18-24. 20. Cragg, G. M.; Grothaus, P. G.; Newman, D. J., Impact of natural products on developing new anti-cancer agents. Chem Rev 2009, 109, 3012-43. 21. Sarkar, F. H.; Li, Y., Using Chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 2006, 66, (7), 3347-50. 22. Lee, K. W.; Bode, A. M.; Dong, Z., Molecular targets of phytochemicals for cancer prevention. Nat Rev Cancer 2011, 11, 211-8. 23. Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E., Production of plant secondary metabolites: a historical perspective. Plant Sci 2001, 161, 839-51. 24. Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; A.Saliba, N.; Darwiche, N., What made sesquiterpene lactones reach cancer clinical trials? Drug Discovery Today 2010, 15, 668-78. 25. Hsu, H. Y., Oriental materia medica: A concise guide. Oriental Healing Arts Institute: Long Beach, CA, 1986; p 190. 26. But, P. P. H.; Hon, P. M.; Cao, H.; Chan, T. W. D.; Wu, B. M.; Mak, T. C. W.; Che, C. T., Sesquiterpene lactones from Elephantopus scaber. Phytochemistry 1997, 44, 113-6. 27. Liang, Q. L.; Min, Z. D., Sesquiterpene lactones from Elephantopus scaber. Chi Chem Lett 2002, 13, 343-4. 28. Huang, C. C.; Lo, C. P.; Chiu, C. Y.; Shyur, L. F., Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice. Bri J Pharmacol 2010, 159, 856-71. 29. Kupchanm, S. M.; Eakin, M. A.; Thomas, A. M., Tumor inhibitors. 69. Structure-cytotoxicity relationships among the sesquiterpene lactones. J Med Chem 1971, 14, 1147-52. 30. Lee, K. H.; Huang, E. S.; Piantadosi, C.; Pagano, J. S.; Geissman, T. A., Cytotoxicity of sesquiterpene lactones. Cancer Res 1971, 31, 1649-54. 31. Ichikawa, H.; Nair, M. S.; Takada, Y.; Sheeja, D. B.; Kumar, M. A.; Oommen, O. V.; Aggarwal, B. B., Isodeoxyelephantopin, a novel sesquiterpene lactone, potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis through suppression of nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB-regulated gene expression. Clin Cancer Res 2006, 12, 5910-8. 32. Half, E.; Tang, X. M.; Gwyn, K.; Sahin, A.; Wathen, K.; Sinicrope, F. A., Cyclooxygenase-2 expression in human breast cancers and adjacent ductal carcinoma in situ. Cancer Res 2002, 62, 1676-81. 33. Golderg, J.; Schwertfeger, K., Proinflammatory cytokines in breast cancer: mechanisms of action and potential targets for therapeutics. Cur Drug Targets 2010, 11, 1133-46. 34. Nanni, P.; de Giovanni, C.; Lollini, P. L.; Nicoletti, G.; Prodi, G., TS/A: a new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma. Clin Exp Metastasis 1983, 1, 373-80. 35. Zou, G.; Gao, Z.; Wang, J.; Zhang, Y.; Ding, H.; Huang, J.; Chen, L.; Guo, Y.; Jiang, H.; Shen, X., Deoxyelephantopin inhibits cancer cell proliferation and functions as a selective partial agonist against PPARgamma. Biochem Pharmacol 2008, 75, 1381-92. 36. Condeelis, J.; Singer, R. H.; Segall, J. E., The great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 2005, 21, 695-718. 37. McGrogan, B. T.; Gilmartin, B.; Carney, D. N.; McCann, A., Taxanes, microtubules and chemoresistant breast cancer. Biochimica et Biophysica Acta 2008, 1785, 96-132. 38. Pandey, A.; Mann, M., Proteomics to study genes and genomes. Nature 2000, 405, 837-46. 39. Uniu, M.; Morgan, M. E.; Minden, J. S., Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 1997, 18, 2071-7. 40. Tonge, R.; Shaw, J.; Middleton, B.; Rowlinson, R.; Rayner, S.; Young, J.; Pognan, F.; Hawkins, E.; Currie, I.; Davison, M., Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 2001, 1, 377-96. 41. Marouga, R.; David, S.; Hawkins, E., The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 2005, 382, 669-78. 42. Chen, Y. P. P.; Chen, F., Identifying targets for drug discovery using bioinformatics. Expert Opin Ther Targets 2008, 12, 383-9. 43. Yang, Y.; Adelstein, S. J.; Kassis, A. I., Target discovery from data mining approaches. Drug Discovery Today 2009, 14, 147-54. 44. Lindsay, M. A., Target discovery. Nat Rev Drug Discovery 2003, 2, 831-8. 45. Ekins, S.; Nikolsky, Y.; Bugrim, A.; Kirillov, E.; Nikolskaya, T., Pathway mapping tools for analysis of high content data. Method Mol Biol 2007, 356, 319-50. 46. Hondermarck, H., Breast cancer: When proteomics challenge biological complexity. Mol Cell Proteomics 2003, 2, 281-91. 47. Chiang, Y. M.; Lo, C. P.; Chen, Y. P.; Wang, S. Y.; N. S. Yang; Kuo, Y. H.; Shyur, L. F., Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br J Pharmacol 2005, 146, 352-63. 48. Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M., Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 1996, 68, 850-8. 49. Adams, J., The proteasome: structure, function, and role in the cell. Cancer Treat Rev 2003, 29, 3-9. 50. Wu, J.; Kaufman, R. J., From acute ER stress to physiological roles of the unfolded protein response. Cell Death Diff 2006, 13, 374-84. 51. Jiang, H. Y.; Wek, R. C., Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 2005, 280, 14189-202. 52. Nakagawa, T.; Zhu, H.; Morishima, N.; Li, E.; Xu, J.; Yankner, B. A.; Yuan, J., Caspase-12 mediates endoplasmic reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000, 403, 98-103. 53. Rosato, A.; Dalla Santa, S.; Zoso, A.; Giacomelli, S.; Milan, G.; Macino, B.; Tosello, V.; Dellabona, P.; Lollini, P. L.; De Giovanni, C.; Zanovello, P., The cytotoxic T-lymphocyte response against a poorly immunogenic mammary adenocarcinoma is focused on a single immunodominant class I epitope derived from the gp70 Env product of an endogenous retrovirus. Cancer Res. 2003, 63, 2158-63. 54. Oshikawa, K.; Shi, F.; Rakhmilevich, A. L.; Sondel, P. M.; Mahvi, D. M.; Yang, N. S., Synergistic inhibition of tumor growth in a murine mammary adenocarcinoma model by combinational gene therapy using IL-12, pro-IL-18, and IL-1beta converting enzyme cDNA. Proc Natl Acad Sci USA 1999, 96, 13351-6. 55. Mollinedo, F.; Gajate, C., Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 2003, 8, 413-50. 56. Lessor, T. J.; Yoo, J. Y.; Xia, X. M.; Woodford, N.; Hamburger, A. W., Ectopic expression of the ErbB-3 binding protein Ebp1 inhibits growth and induces differentiation of human breast cancer cell lines. J Cell Physiol 2000, 183, 321-9. 57. Lee, K. H.; Hall, I. H.; Mar, E. C.; Starnes, C. O.; Elgebaly, S. A.; Waddell, T. G.; Hadgraft, R. I.; Ruffner, C. G.; Weidner, I., Sesquiterpene antitumor agents: Inhibitors of cellular metabolism. Science 1977, 196, 533-6. 58. Daniely, Y.; Dimitrova, D. D.; Borowiec, J. A., Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol Cell Biol 2002, 22, 6014-22. 59. Martinez-Contreras, R.; Cloutier, P.; Shkreta, L.; Fisette, J.; Revil, T.; Chabot, B., hnRNP proteins and splicing control. Adv Exp Med Biol 2007, 623, 123-47. 60. Inoue, A.; Sawata, S. Y.; Taira, K.; Wadhwa, R., Loss-of-function screening by randomized intracellular antibodies: Identification of hnRNP-K as a potential target for metastasis. Proc Natl Acad Sci USA 2007, 104, 8983-8. 61. Nagaoka, K.; Tanaka, T.; Imakawa, K.; Sakai, S., Involvement of RNA binding proteins AUF1 in mammary gland differentiation. Exp Cell Res 2007, 313, 2937-45. 62. Kersten, S.; Desvergne, B.; Wahli, W., Roles of PPARs in health and disease. Nature 2000, 405, 421-4. 63. Toth, J.; Varga, B.; Kovacs, M.; Malnasi-Csizmadia, A.; Vertessy, B. G., Kinetic mechanism of human dUTPase, an essential nucleotide pyrophosphatase enzyme. J Biol Chem 2007, 282, 33572-82. 64. Rual, J. F.; Venkatesan, K.; Hao, T.; Hirozane-Kishikawa, T.; Dricot, A.; Li, N.; Berriz, G. F.; Gibbons, F. D.; Dreze, M.; Ayivi-Guedehoussou, N.; Klitgord, N.; Simon, C.; Boxem, M.; Milstein, S.; Rosenberg, J.; Goldberg, D. S.; Zhang, L. V.; Wong, S. L.; Franklin, G.; Li, S.; Albala, J. S.; Lim, J.; Fraughton, C.; Llamosas, E.; Cevik, S.; Bex, C.; Lamesch, P.; Sikorski, R. S.; Vandenhaute, J.; Zoghbi, H. Y.; Smolyar, A.; Bosak, S.; Sequerra, R.; Doucette-Stamm, L.; Cusick, M. E.; Hill, D. E.; Roth, F. P.; Vidal, M., Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437, 1173-8. 65. Shcherbik, N.; Haines, D. S., Ub on the move. J Cell Biochem 2004, 93, 11-9. 66. Hirano, Y.; Hendil, K. B.; Yashiroda, H.; Iemura, S.; Nagane, R.; Hioki, Y.; Natsume, T.; Tanaka, K.; Murata, S., A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 2005, 437, 1381-5. 67. Sullivan, D. C.; Huminiecki, L.; Moore, J. W.; Boyle, J. J.; R. Poulsom ; Creamer, D.; Barker, J.; Bicknell, R., EndoPDI, a novel protein-disulfide isomerase-like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. J Biol Chem 2003, 278, 47079-88. 68. Fribley, A.; Wang, C. Y., Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol Ther 2006, 5, 745-8. 69. Cicchillitti, L.; Michele, M. D.; Urbani, A.; Ferlini, C.; Donati, M. B.; Scambia, G.; Rotilio, D., Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer cell line and its resistant counterpart A2780TC1 by 2D-DIGE: The role of ERp57. J Proteome Res 2009, 8, 1902-12. 70. Dowling, P.; Meleady, P.; Dowd, A.; Henry, M.; Glynn, S.; Clynes, M., Proteomic analysis of isolated membrane fractions from superinvasive cancer cells. Biochim Biophys Acta 2007, 1774, 93-101. 71. Alli, E.; Bash-Babula, J.; Yang, J. M.; Hait, W. N., Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res 2002, 62, 6864-9. 72. Belmont, L. D.; Mitchison, T. J., Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 1996, 84, 623-31. 73. Dziadyk, J. M.; Sui, M.; Zhu, X.; Fan, W., Paclitaxel-induced Apoptosis May Occur without a Prior G2/M-Phase Arrest. Anticancer Res 2004, 24, 27-36. 74. Liao, P. C.; Tan, S. K.; Lieu, C. H.; Jung, H. K., Involvement of endoplasmic reticulum in paclitaxel-induced apoptosis. J Cell Biochem 2008, 104, 1509-23. 75. Garneau, D.; Revil, T. e.; Fisette, J.-F. o.; Chabot, B., Heterogeneous Nuclear Ribonucleoprotein F/H Proteins Modulate the Alternative Splicing of the Apoptotic Mediator Bcl-x. J Biol Chem 2005, 280, 22641-50. 76. Puthalakath, H.; O''Reilly L, A.; Gunn, P.; Lee, L.; Kelly, P. N.; Huntington, N. D.; Hughes, P. D.; Michalak, E. M.; McKimm-Breschkin, J.; Motoyama, N.; Gotoh, T.; Akira, S.; Bouillet, P.; Strasser, A., ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 2007, 129, 1337-49. 77. Yilmaz, M.; Christofori, G., Mechanisms of motility in metastasizing cells. Mol Cancer Res 2010, 8, 629-42. 78. Friedl, P.; Wolf, K., Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003, 3, 362-74. 79. Ridley, A. J.; Schwartz, M. A.; Burridge, K.; Firtel, R. A.; Ginsberg, M. H.; Borisy, G.; Parsons, J. T.; Horwitz, A. R., Cell migration: integrating signals from front to back. Science 2003, 302, 1704-9. 80. Hall, A.; Nobes, C. D., Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Phil Trans R Soc Lond B 2000, 355, 965-70. 81. Sahai, E.; J.Marshall, C., Rho-GTPases and cancer. Nat Rev Cancer 2002, 2, 133-42. 82. Lee, W. L.; Wen, T. N.; Shiau, J. Y.; Shyur, L. F., Differential proteomic profiling identifies novel molecular targets of paclitaxel and phytoagent deoxyelephantopin against mammary adenocarcinoma cells. J Proteome Res 2010, 9, 237-53. 83. Franco, S. J.; Huttenlocher, A., Regulating cell migration: calpains make the cut. J Cell Sci 2005, 118, 3829-38. 84. Sato, K.; Kawashima, S., Calpain function in the modulation of signal transduction molecules. Biol Chem 2001, 382, 743-51. 85. Franco, S.; Perrin, B.; Huttenlocher, A., Isoform specific function of calpain 2 in regulating membrane protrusion. Exp Cell Res 2004, 299, 179-87. 86. Rios-Doria, J.; Day, K. C.; Kuefer, R.; Rashid, M. G.; Chinnaiyan, A. M.; Rubin, M. A.; Day, M. L., The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J Biol Chem 2003, 278, 1372-9. 87. Libertini, S. J.; Robinson, B. S.; Dhillon, N. K.; Glick, D.; George, M.; Dandekar, S.; Gregg, J. P.; Sawai, E.; Mudryj, M., Cyclin E both regulates and is regulated by calpain 2, a protease associated with metastatic breast cancer phenotype. Cancer Res 2005, 65, 10700-8. 88. Roumes, H.; Leloup, L.; Dargelos, E.; Brustis, J. J.; Daury, L.; Cottin, P., Calpains: markers of tumor aggressiveness? Exp Cell Res 2010, 316, 1587-99. 89. Kondo, N.; Nakamura, H.; Masutani, H.; Yodoi, J., Redox regulation of human thioredoxin network. Antioxid Redox Signal 2006, 8, 1881-90. 90. Jones, D. P., Redefining oxidative stress. Antioxid Redox Signal 2006, 8, 1865-79. 91. Schumacker, P. T., Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell 2006, 10, 175-6. 92. Warburg, O., On the origin of cancer cells. Science 1956, 123, 309-14. 93. Yoshii, Y.; Furukawa, T.; Yoshii, H.; Mori, T.; Kiyono, Y.; Waki, A.; Kobayashi, M.; Tsujikawa, T.; Kudo, T.; Okazawa, H.; Yonekura, Y.; Fujibayashi, Y., Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism. Cancer Sci 2009, 100, 821-7. 94. Simizu, S.; Takada, M.; Umezawa, K.; Imoto, M., Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem 1998, 273, 26900-7. 95. Fang, J.; Seki, T.; Maeda, H., Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Delivery Rev 2009, 61, 290-302. 96. Mazeres, G.; Leloup, L.; Daury, L.; Cottin, P.; Brustis, J. J., Myoblast attachment and spreading are regulated by different patterns by ubiquitous calpains. Cell Mot Cytoskeleton 2006, 63, 193-207. 97. Matteis, M. A. D.; Morrow, J. S., Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 2000, 113, 2331-43. 98. Carragher, N. O., Calpain inhibition: A therapeutic strategy targeting multiple disease states. Curr Pharmaceut Design 2006, 12, 615-38. 99. Shuster, C. B.; Herman, I. M., Indirect association of ezrin with F-Actin: Isoform specificity and calcium sensitivity. J Cell Biol 1995, 128, 837-48. 100. Cooray, P.; Yuan, Y.; Schoenwaelder, S. M.; Mitchell, C. A.; Salem, H. H.; Jackson, S. P., Focal adhesion kinase (pp125FAK) cleavage and regulation by calpain. Biochem J 1996, 318, 41-7. 101. Xu, Y.; Bismar, T. A.; Su, J.; Xu, B.; Kristiansen, G.; Varga, Z.; Teng, L.; Ingber, D. E.; Mammoto, A.; Kumar, R.; Alaoui-Jamali, M. A., Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. J Exp Med 2010, 207, 2421-37. 102. Mitra, S. K.; Hanson, D. A.; Schlaepfer, D. D., Focal adhesion kinase: In command and control of cell motility. Nat Rev Mol Cell Biol 2005, 6, 56-68. 103. Jockusch, B. M.; Rudiger, M., Crosstalk between cell adhesion molecules: vinculin as a paradigm for regulation by conformation. Trends Cell Biol 1996, 6, 311-5. 104. Perrin, B. J.; Huttenlocher, A., Calpain. Int J Biochem Cell Biol 2002, 34, 722-5. 105. Potter, D. A.; Tirnauer, J. S.; Janssen, R.; Croall, D. E.; Hughes, C. N.; Fiacco, K. A.; Mier, J. W.; Maki, M.; Herman, I. M., Calpain regulates actin remodeling during cell spreading. J Cell Biol 1998, 141, 647-62. 106. Fais, S., Moulding the shape of a metastatic cell. Leukemia Res 2010, 34, 843-7. 107. Segall, J. E.; Tyerech, S.; Boselli, L.; Masseling, S.; Helft, J.; Chan, A.; Jonest, J.; Condeelis, J., EGF stimulates lamellipod extension in metastatic mammary adenocarcinoma cells by an actin-dependent mechanism. Clin Exp Metastasis, 1996, 14, 61-72. 108. Wang, Y. N.; Wang, H.; Yamaguchi, H.; Lee, H. J.; Lee, H. H.; Hung, M. C., COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Comm 2010, 399, 498-504. 109. Yamada, H. Y.; Gorbsky, G. J., Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol Cancer Ther 2006, 5, 2963-9. 110. Wojcik, C.; DeMartino, G. N., Intracellular localization of proteasomes. Int J Biochem Cell Biol 2003, 35, 579-89. 111. Fribley, A.; Zeng, Q.; Wang, C. Y., Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 2004, 24, 9695-704. 112. Perez-Galan, P.; Roue, G.; Villamor, N.; Montserrat, E.; Campo, E.; Colomer, D., The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 2006, 107, 257-64. 113. Torres, M.; Forman, H. J., Redox signaling and the MAP kinase pathways. BioFactors 2003, 17, 287-96. 114. Malhotra, J. D.; Kaufman, R. J., Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxid Redox Signal 2007, 9, 2277-93. 115. Bola, B.; Allan, V., How and why does the endoplasmic reticulum move? Biochem Soc Trans 2009, 37, 961-5. 116. Mamoune, A.; Luo, J. H.; Lauffenburger, D. A.; Wells, A., Calpain-2 as a target for limiting prostate cancer invasion. Cancer Res 2003, 63, 4632-40. 117. Glading, A.; Lauffenburger, D. A.; Wells, A., Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol 2002, 12, 46-54. 118. Chan, K. T.; Bennin, D. A.; Huttenlocher, A., Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J Biol Chem 2010, 285, 11418-26. 119. Storr, S. J.; O. Carragher, N.; C. Frame, M.; Parr, T.; G. Martin, S., The calpain system and cancer. Nat Revi Cancer 2011, 11, 364-74. 120. Barret, C.; Roy, C.; Montcourrier, P.; Mangeat, P.; Niggli, V., Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J Cell Biol 2000, 151, 1067-79. 121. Grewal, T.; Enrich, C., Annexins — modulators of EGF receptor signalling and trafficking. Cell Signal 2009, 21, 847-58. 122. Sadowski, L.; Pilecka, I.; Miaczynska, M., Signaling from endosomes: Location makes a difference. Exp Cell Res 2009, 315, 1601-09. 123. Palamidessi, A.; Frittoli, E.; Garre, M.; Faretta, M.; Mione, M.; Testa, I.; Diaspro, A.; Lanzetti, L.; Scita, G.; Fiore, P. P. D., Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 2008, 134, 135-47. 124. Alves-Rodrigues, A.; Gregori, L.; Figueiredo-Pereira, M. E., Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 1998, 21, 516-20. 125. Johnston, J. A.; Ward, C. L.; Kopito, R. R., Aggresomes: A cellular response to misfolded proteins. J Cell Biol 1998, 143, 1883-98. 126. Rodriguez-Gonzalez, A.; Lin, T.; Ikeda, A. K.; Simms-Waldrip, T.; Fu, C.; Sakamoto, K. M., Role of the aggresome pathway in cancer: Targeting histone deacetylase 6-dependent protein degradation. Cancer Res 2008, 68, 2557-60. 127. Yokouchi, M.; Hiramatsu, N.; Hayakawa, K.; Okamura, M.; Du, S.; Kasai, A.; Takano, Y.; Shitamura, A.; Shimada, T.; Yao, J.; Kitamura, M., Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response. J Biol Chem 2008, 283, 4252-60. 128. Wong, C. H.; Iskandar, K. B.; Yadav, S. K.; Hirpara, J. L.; Loh, T.; Pervaiz, S., Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PLoS ONE 2010, 5, e9996. 129. Wang, C. C. C.; Chiang, Y. M.; Sung, S. C.; Hsu, Y. L.; Chang, J. K.; Kuo, P. L., Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett 2008, 259, 82-98. 130. Chang, I. C.; Huang, Y. J.; Chiang, T. I.; Yeh, C. W.; Hsu, L. S., Shikonin induces apoptosis through reactive oxygen species/extracellular signal -regulated kinase pathway in osteosarcoma. Biol Pharm Bull 2010, 33, 816-24. 131. Sandur, S. K.; Ichikawa, H.; Pandey, M. K.; Kunnumakkara, A. B.; Sung, B.; Sethi, G.; Aggarwal, B. B., Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Rad Biol Med 2007, 43, 568-80. 132. Garcia-Mata, R.; Gao, Y. S.; Sztul, E., Hassles with taking out the garbage: Aggravating aggresomes. Traffic 2002, 3, 388-96. 133. Ogburn, K. D.; Figueiredo-Pereira, M. E., Cytoskeleton/endoplasmic reticulum collapse induced by prostaglandin J2 parallels centrosomal deposition of ubiquitinated protein aggregates. J Biol Chem. 2006, 281, 23274-84. 134. Didier, C.; Merdes, A.; Gairin, J.-E.; Jabrane-Ferrat, N., Inhibition of proteasome activity impairs centrosome-dependent microtubule nucleation and organization. Mol Biol Cell 2008, 19, 1220-9. 135. Kortazar, D.; Fanarraga, M. L.; Carranza, G.; Bellido, J.; Villegas, J. C.; Avila, J.; Zabala, J. C., Role of cofactors B (TBCB) and E (TBCE) in tubulin heterodimer dissociation. Exp Cell Res 2007, 425-36. 136. Vasiliev, J. M.; Gelfand, I. M.; Domnina, L. V.; Ivanova, O. Y.; Komm, S. G.; Olshevskaja, L. V., Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol 1970, 24, 625-40. 137. Bertling, E.; Hotulainen, P.; Mattila, P. K.; Matilainen, T.; Salminen, M.; Lappalainen, P., Cyclase-associated protein 1 (CAP1) promotes cofilininduced actin dynamics in mammalian nonmuscle cells. Mol Biol Cell 2004, 15, 2324-34. 138. Kardosh, A.; Golden, E. B.; Pyrko, P.; Uddin, J.; Hofman, F. M.; Chen, T. C.; Louie, S. G.; Petasis, N. A.; Schonthal, A. H., Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res 2008, 68, 843-51. 139. Tishler, R. B.; Schiff, P. B.; Geard, C. R.; Hall, E. J., Taxol: a novel radiation sensitizer. Int J Radiat Oncol Biol Phys 1992, 22, 613-7. 140. Adams, J., The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004, 4, 349-60. 141. Drexler, H. C. A., Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci USA 1997, 94, 855-60. 142. Landis-Piwowar, K. R.; Milacic, V.; Chen, D.; Yang, H.; Zhao, Y.; Chan, T. H.; Yan, B.; Dou, Q. P., The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Update 2006, 9, 263-73. 143. Adams, J., The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004, 5, 417-21. 144. Patel, N. M.; Nozaki, S.; Shortle, N. H.; Bhat-Nakshatri, P.; Newton, T. R.; Rice, S.; Gelfanov, V.; Boswell, S. H.; Jr, R. J. G.; Jr, G. W. S.; Nakshatri, H., Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kB is enhanced by IkBa super-repressor and parthenolide. Oncogene 2000, 19, 4159-69. 145. Li, R.; Moudgil, T.; Ross, H.; Hu, H. M., Apoptosis of non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. Cell Death Diff 2005, 12, 292-303. 146. Hernandez-Vargas, H.; von Kobbe, C.; Sanchez-Estevez, C.; Julian-Tendero, M.; Palacios, J.; Moreno-Bueno, G., Inhibition of paclitaxel-induced proteasome activation influences paclitaxel cytotoxicity in breast cancer cells in a sequence-dependent manner. Cell Cycle 2007, 6, 2662-8. 147. Tan, T. T.; Degenhardt, K.; Nelson, D. A.; Beaudoin, B.; Nieves-Neira, W.; Bouillet, P.; Villunger, A.; Adams, J. M.; White, E., Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 2005, 7, 227-38. 148. Obeng, E. A.; Carlson, L. M.; Gutman, D. M.; Jr, W. J. H.; Lee, K. P.; Boise, L. H., Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006, 107, 4907-16. 149. Wang, M. S.; Davis, A. A.; Culver, D. G.; Wang, Q.; Powers, J. C.; Glass, J. D., Calpain inhibition protects against Taxol-induced sensory neuropathy. Brain 2004, 127, 671-9. 150. Wilhelm, D.; Bender, K.; Knebel, A.; Angel, P., The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents. Mol Cell Biol 1997, 17, 4792-800. 151. Adachi, M.; Zhang, Y.; Zhao, X.; Minami, T.; Kawamura, R.; Hinoda, Y.; Imai, K., Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells. Clin Cancer Res 2004, 10, 3853-62. 152. Shang, F.; Taylor, A., Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Rad Biol Med 2011, 51, 5-16. 153. Dantuma, N. P.; Groothuis, T. A. M.; Salomons F. A.; Neefjes, J., A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J Cell Biol 2006, 173, 19-26. 154. Mukhopadhyay, D.; Riezman, H., Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007, 315, 201-5. 155. Muratani, M.; Tansey, W. P., How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 2003, 4, 1-10. 156. Bergink, S.; Jentsch, S., Principles of ubiquitin and SUMO modifications in DNA repair. Nature 2009, 458, 461-7. | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11455/36300 | - |
dc.description.abstract | 越來越多研究指出植物衍生而來的化合物具有化學預防或化學治療的特性,並具有潛能結合現有的化學療法來有效的治療各種癌症。從傳統藥草菊科植物地膽草 (Elephantopus scaber L.) 所萃取出具有抗癌性質的活性成分,主要是屬於倍半萜類 (germacranolid sesquiterpene lactone) 的deoxyelephantopin (DET)。相較於常被使用來治療乳癌的化療藥物紫杉醇 (paclitaxel, PTX),我們實驗室先前的研究證實不論是在活體外 (in vitro) 或活體內 (in vivo) 的實驗系統下,DET的處理可以更有效的抑制老鼠TS/A乳腺腫瘤的生長與轉移。本論文研究主要利用蛋白質體技術也就是二維凝膠電泳及液相層析-電熱灑離子化二次質譜儀 (liquid chromatography electrospray ionization tandem mass spectrometry, LC-ESI-MS/MS) 來分析TS/A細胞中蛋白質在DET 和PTX的處理下表現的差異,然後利用生物資訊軟體MetaCore來分析顯示差異的蛋白之間的相互關係以及有關的生物訊息途徑。實驗結果顯示,DET和PTX對涉及蛋白質降解及鈣離子傳送的蛋白質有顯著的影響,從而推斷出這兩種化合物可能會影響TS/A細胞中蛋白酶體 (proteasome) 及內質網的功能。利用西方墨點法進一步證實,DET和PTX的處理同樣會引起內質網的壓力 (ER stress) 繼而導致細胞凋亡,而只有DET可以抑制TS/A細胞蛋白酶體中蛋白質降解的功能。另一方面,蛋白質體研究的結果也顯示DET會影響TS/A細胞的肌動蛋白 (actin) 系統,同時抑制鈣蛋白酵素 (calpain) 對多種骨架蛋白質的水解,而PTX主要是影響細胞內微管蛋白質系統。在更深入的實驗中發現DET會影響鈣蛋白酵素的催化活性及其所調控的細胞運動形態。MetaCore分析的結果也顯示Rho GTPase可能涉及DET對肌動蛋白的作用,而DET對TS/A細胞的處理確實明顯的抑制了由上皮生長因子 (EGF) 活化的Rac 1蛋白及其下游的層狀偽足 (lamellipodia) 的形成。另外,DET會阻擾上皮生長因子在TS/A細胞中的運輸及導致被泛素修飾的蛋白 (ubiquitinated proteins) 聚集在中心體所在處。值得注意的是,DET所誘導產生的活性氧化物 (ROS) 是引發中心體聚集物的上游刺激分子,進而可能造成限制乳癌細胞的活性及移動能力。綜合以上結果,本篇論文之研究提供深入證據闡明DET抑制乳腺癌細胞的活性與轉移的新穎藥理作用機制。 | zh_TW |
dc.description.abstract | Accumulating evidences have shown that various plant-derived phytocompounds possess chemopreventive or chemotherapeutic properties, suggesting their potential for use in combination with chemotherapeutics as effective treatments for various cancers. One such potent antitumor phytocompound is the major germacranolide sesquiterpene lactone, deoxyelephantopin (DET) from the traditional medicinal herb Elephantopus scaber L (Asteraceae). Previously, DET was found in our lab to suppress mammary carcinoma metastasis in vitro and in vivo with a more superior effect than Paclitaxel (PTX), a front line chemotherapeutic agent commonly utilized in the treatment of breast cancer. In this study, two-dimensional differential in-gel electrophoresis (2-D DIGE) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) were first used to profile proteins differentially expressed in TS/A cells, and affected functional protein networks were analyzed using MetaCore database. DET and PTX treatment resulted in regulation of molecules involved in proteolysis and calcium ion transport, suggesting the possible effects of both chemicals on proteasome and endoplasmic reticulum (ER) machinery in TS/A cells. Western blot analysis of marker proteins further verified that induction of ER stress was associated with apoptosis induced by both DET and PTX, but only DET inhibited proteasomal proteolysis in TS/A cells. Besides, proteomic study also suggested that DET affects actin cytoskeletal protein networks and downregulates calpain proteolyzed fragments of several actin-associated proteins, while PTX interferes mainly with microtubule proteins. Further investigation of the putative inhibitory effect of DET on calpain and associated cytoskeletal regulation found that DET inhibits enzymatic activity of calpain in TS/A cells. As Rho GTPases were suggested as part of DET action by MetaCore network analysis, epithelial growth factor (EGF)-mediated activation of Rac1 and formation of lamellipodia in TS/A cells were indeed remarkably suppressed by DET treatment. Further, DET impaired vesicular trafficking of EGF and induced formation of centrosomal aggregates of ubiquitinated proteins in TS/A cells. Notably, DET-induced reactive oxygen species (ROS) was observed to be the trigger for inducing the centrosomal ubiquitinated protein aggregates that might subsequently restrict cancer cell viability and motility. Together, this study provides novel mechanistic insights into the pharmacological action of DET against metastatic mammary cell migration. | en_US |
dc.description.tableofcontents | Table of contents..................................... i List of Figures....................................... vii List of Tables........................................ ix Abbreviations......................................... x Abstract (Chinese).................................... xv Abstract (English).................................... xvi Part 1. Introduction of phytoagent deoxyelephantopin and its potential development in therapeutic intervention of breast cancer................................................ 1 1.1 Breast cancer treatment approaches and barriers 2 1.2 Research of phytoagents in cancer treatment... 4 1.3 Deoxyelephantopin (DET)....................... 5 1.4 Research design and experiment approaches..... 8 Part 2. Differential proteomic profiling identifies novel molecular targets of phytoagent deoxyelephantopin and clinical drug paclitaxel against mammary adenocarcinoma cells................................................. 11 2.1 Introduction.................................. 12 2.1.1 DIGE in 2-DE proteomics study................. 12 2.1.2 Bioinformatic data mining and target discovery 13 2.2 Materials and Methods......................... 15 2.2.1 Isolation and structure elucidation of DET.... 15 2.2.2 Chemicals & Reagents.......................... 15 2.2.3 Cell culture.................................. 16 2.2.4 Cytotoxicity assay............................ 16 2.2.5 Nuclear and cytoplasmic protein extraction.... 16 2.2.6 DIGE experimental design...................... 17 2.2.7 DIGE 2-DE..................................... 17 2.2.8 DIGE image analysis........................... 18 2.2.9 In-gel trypsin digestion...................... 18 2.2.10 MS analysis and protein identification....... 19 2.2.11 Database search.............................. 19 2.2.12 Bioinformatics analysis...................... 20 2.2.13 Western blotting............................. 20 2.2.14 Assay for proteasome activities.............. 21 2.2.15 Immunofluorescence and microscopy............ 21 2.2.16 Statistical analysis......................... 22 2.3 Results....................................... 22 2.3.1 Cytotoxic effects of DET and PTX in mammary carcinoma cells....................................... 22 2.3.2 2-DE analysis of vehicle control, DET and PTX treated mammary carcinoma cells....................... 22 2.3.3 Identification of the differentially expressed proteins.............................................. 23 2.3.4 Protein database search and classification.... 24 2.3.5 Bioinformatic analysis of subcellular treatment responsive protein networks........................... 24 2.3.6 Bioinformatic analysis of time course dependent treatment responsive protein networks................. 25 2.3.7 Regulation of proteasome and ER associated proteins in treated TS/A cells................................. 26 2.3.8 Regulation of ubiquitin proteasome mediated proteolysis in treated TS/A cells..................... 27 2.3.9 Induction of cell stress and programmed cell death in DET and PTX-treated cells.......................... 28 2.4 Discussion.................................... 29 2.4.1 Cell cycle and DNA damage..................... 30 2.4.2 Heterogeneous nuclear ribonucleoproteins...... 30 2.4.3 Enzymes in response to DET-treated TS/A cells. 31 2.4.4 Ubiquitin proteasome proteolysis in DET-treated TS/A cells................................................. 31 2.4.5 ER stress and apoptosis induction in DET-treated TS/A cells............................................ 32 2.4.6 Regulations in response to PTX treatment...... 33 Part 3. Deoxyelephantopin impedes mammary adenocarcinoma cell motility through inhibiting calpain-mediated adhesion dynamics and inducing ROS and aggresome formation..... 55 3.1 Introduction.................................. 56 3.1.1 Rho-family GTPases............................ 56 3.1.2 Calpain and tumor malignancy.................. 57 3.1.3 Reactive oxygen species (ROS) and cancer...... 58 3.2 Materials and Methods......................... 59 3.2.1 Cell lines and cell cultures.................. 59 3.2.2 Isolation and structure elucidation of DET.... 59 3.2.3 Chemicals and reagents........................ 59 3.2.4 Timelapse microscopy.......................... 60 3.2.5 Immunofluorescence cell staining.............. 60 3.2.6 Fluorescence imaging.......................... 61 3.2.7 In vitro calpain cleavage assay............... 61 3.2.8 BOC assay..................................... 61 3.2.9 Spreading assay............................... 62 3.2.10 Migration assay.............................. 62 3.2.11 Rho GTPases activation assay................. 62 3.2.12 Measurement of ROS........................... 63 3.2.13 Western blotting............................. 63 3.2.14 Immunoprecipitation.......................... 63 3.2.15 Statistical analysis......................... 64 3.3 Results....................................... 64 3.3.1 Proliferation and migration kinetics of TS/A cells treated with DET and PTX.............................. 64 3.3.2 Regulation of actin and the microtubule cytoskeleton.......................................... 65 3.3.3 Inhibition of proteolysis of actin cytoskeleton-associated proteins by DET identified by differential proteomic profiling................................... 66 3.3.4 Inhibition of calpain activity and FAK proteolysis........................................... 67 3.3.5 Effect of DET on formation of focal adhesions 68 3.3.6 Effect of DET on cell membrane protrusion... 68 3.3.7 Effect of DET on Rho GTPases activation and lamellipodia formation................................ 69 3.3.8 Deregulation of EGF delivery and formation of centrasomal aggregates................................ 70 3.3.9 Effect of DET-induced ROS on centrosomal aggregation and ubiquitinated protein accumulation.... 71 3.3.10 Effect of DET-induced ROS on TS/A cell viability and cell migration.................................... 72 3.4 Discussion.................................... 73 3.4.1 Calpain system in DET-treated TS/A cells...... 73 3.4.2 Membrane protrusion in DET-treated TS/A cells. 74 3.4.3 ROS-induced aggresome formation and apoptosis in DET-treated TS/A cells................................ 75 3.4.4 Cytoskeletal regulations in DET-treated TS/A cells................................................. 76 3.4.5 Regulations in PTX-treated TS/A cells......... 77 Part 4. Conclusions and future prospects.............. 97 4.1 Conclusions................................... 98 4.2 Future prospects.............................. 101 References............................................ 107 Appendix.............................................. 121 Supplementary Fig. 2-1. Preliminary 2-DE image analysis 122 Supplementary Fig. 2-2. Verification of TS/A cell fractionation......................................... 122 Supplementary Fig. 2-3. DIGE image analysis using DeCyder differential analysis module.......................... 123 Supplementary Fig. 3-1. Desensitization of GPCR protein signaling pathway..................................... 124 Supplementary Table 2-1. Number of detected protein spots with significant relative fold change (>1.5) in DET- and PTX-treated TS/A cells (P < 0.05)..................... 125 Supplementary Methods. MetaCore database architecture. 125 Curriculum vitae...................................... 130 List of Figures Fig. 1-1. Chemical structures of sesquiterpene lactones 6 Fig. 1-2. Schematic flow chart of research design and experimental procedures............................... 10 Fig. 2-1. Effect of DET and PTX on TS/A cell viability 42 Fig. 2-2. Experimental design and protocol of 2-DE DIGE 43 Fig. 2-3. Proteome maps with indicated DET and PTX responsive proteins inTS/A cells...................... 44 Fig. 2-4. Functional classification of DET and PTX responsive proteins................................... 46 Fig. 2-5. Time-course dependent regulation of protein networks responsive to DET and PTX treatment.......... 47 Fig. 2-6. Proteasome and ER-associated proteins....... 48 Fig. 2-7. Regulation of ubiquitin proteasome proteolysis inTS/A cells.......................................... 50 Fig. 2-8. Induced cell stress responses and programmed cell death in treated TS/A cells........................... 52 Fig. 2-9. Proposed molecular mechanism of DET and PTX-induced programmed cell death in TS/A mammary adenocarcinoma cells................................................. 54 Fig. 3-1. Kinetic characteristics of the migration of TS/A cells treated with DET and PTX........................ 79 Fig. 3-2. Immunofluorescence analysis of actin and microtubule organization in DET-and PTX- treated TS/A cells. 81 Fig. 3-3. Cytoskeleton-associated proteins with inhibited proteolysis identified from differential proteomic profiling of DET treated TS/A cells............................. 82 Fig. 3-4. Effect of calpain activity in TS/A cells.... 84 Fig. 3-5. Effect on formation of focal adhesion in TS/A cells................................................. 86 Fig. 3-6. Effect of cell spreading and lamellipodia formation in TS/A cells............................... 88 Fig. 3-7. Deregulation of EGF delivery and formation of centrasomal aggregates................................ 90 Fig. 3-8. Effect of ROS on centrosomal aggregation and ubiquitinated protein accumulation.................... 92 Fig. 3-9. Effect of ROS on TS/A cell viability and cell migration............................................. 94 Fig. 3-10. Summary of proposed molecular mechanisms underlying inhibitory effect of DET in suppression of TS/A cell migration........................................ 96 Fig. 4-1. Summary of putative protein networks involved in DET- and PTX-mediated suppression on TS/A mammary carcinoma cell activities....................................... 105 List of Tables Table 2-1. Identification of differentially expressed proteins in DET-treated TS/A cells.................... 35 Table 2-2. Identification of differentially expressed proteins in PTX-treated TS/A cells.................... 38 Table 2-3. MetaCore network analysis of DET modulated protein networks in TS/A cells........................ 40 Table 2-4. MetaCore network analysis of PTX modulated protein networks in TS/A cells........................ 41 | en_US |
dc.language.iso | en_US | zh_TW |
dc.publisher | 生物科技學研究所 | zh_TW |
dc.relation.uri | http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2507201122485600 | en_US |
dc.subject | 倍半萜類 | zh_TW |
dc.subject | pharmacological action | en_US |
dc.subject | 傳統藥草 | zh_TW |
dc.subject | 地膽草 | zh_TW |
dc.subject | 紫杉醇 | zh_TW |
dc.subject | 乳腺腫瘤 | zh_TW |
dc.subject | 活性氧化物 | zh_TW |
dc.subject | 中心體 | zh_TW |
dc.subject | 泛素 | zh_TW |
dc.subject | 上皮生長因子 | zh_TW |
dc.subject | 細胞運動 | zh_TW |
dc.subject | 微管蛋白質 | zh_TW |
dc.subject | 骨架蛋白質 | zh_TW |
dc.subject | 鈣蛋白酵素 | zh_TW |
dc.subject | 肌動蛋白 | zh_TW |
dc.subject | 細胞凋亡 | zh_TW |
dc.subject | 內質網 | zh_TW |
dc.subject | 二維凝膠電泳 | zh_TW |
dc.subject | 蛋白酶體 | zh_TW |
dc.subject | 蛋白質體 | zh_TW |
dc.subject | 轉移 | zh_TW |
dc.subject | 藥理作用機制 | zh_TW |
dc.subject | 乳癌治療 | zh_TW |
dc.subject | cell motility | en_US |
dc.subject | reactive oxygen species | en_US |
dc.subject | ubiquitinated proteins | en_US |
dc.subject | centrosomal aggregates | en_US |
dc.subject | epithelial growth factor | en_US |
dc.subject | calpain | en_US |
dc.subject | cytoskeletal protein | en_US |
dc.subject | actin | en_US |
dc.subject | proteomic study | en_US |
dc.subject | proteasomal proteolysis | en_US |
dc.subject | apoptosis | en_US |
dc.subject | endoplasmic reticulum stress | en_US |
dc.subject | proteasome | en_US |
dc.subject | MetaCore database | en_US |
dc.subject | two-dimensional differential in-gel electrophoresis | en_US |
dc.subject | breast cancer treatment | en_US |
dc.subject | traditional medicinal herb | en_US |
dc.subject | Elephantopus scaber | en_US |
dc.subject | germacranolide sesquiterpene lactone | en_US |
dc.subject | deoxyelephantopin | en_US |
dc.subject | paclitaxel | en_US |
dc.subject | TS/A cells | en_US |
dc.subject | mammary adenocarcinoma | en_US |
dc.subject | metastasis | en_US |
dc.title | 植物成分deoxyelephantopin與化療藥紫杉醇作用於乳腺癌細胞之分子標的與機制研究 | zh_TW |
dc.title | Novel molecular targets and mechanisms of phytoagent deoxyelephantopin and chemotherapeutic drug paclitaxel against mammary carcinoma cell | en_US |
dc.type | Thesis and Dissertation | zh_TW |
item.openairetype | Thesis and Dissertation | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en_US | - |
item.grantfulltext | none | - |
item.fulltext | no fulltext | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | 生物科技學研究所 |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.