Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36302
標題: 丹參酚酸鎂鹽B活血化瘀與樟芝酸A抗發炎之分子機制探討
Molecular Mechanisms of Magnesium Lithospermate B and Antcin A in Promoting Blood Circulation and Anti-inflammation
作者: 陳怡菁
Chen, Yi-Ching
關鍵字: Danshen;丹參;MLB;Niuchangchih;Antrodia camphorata;Taiwanofungus camphoratus;Antcin A;molecular mechanism;anti-inflammation;calcium;glucocorticoid;cardiac glycosides;牛樟芝;丹參酚酸鎂鹽B;樟芝酸A;活血化瘀;抗發炎;機制;鈣離子;醣皮質激素;強心配醣體
出版社: 生物科技學研究所
引用: REFERENCES 1 Li XC, Yu C, Sun WK, Liu GY, Jia JY, Wang YP. Pharmacokinetics of magnesium lithospermate B after intravenous administration in beagle dogs. Acta Pharmacol Sin 2004; 25: 1402-7. 2 Guo ZJ, Zhang Y, Tang X, Li H, Sun QS. Pharmacokinetic interaction between tanshinones and polyphenolic extracts of salvia miltinorrhiza BUNGE after intravenous administration in rats. Biol Pharm Bull 2008; 31: 1469-74. 3 O K, Lynn EG, Vazhappilly R, Au-Yeung KK, Zhu DY, Siow YL. Magnesium tanshinoate B (MTB) inhibits low density lipoprotein oxidation. Life Sci 2001; 68: 903-12. 4 Yokozawa T, Lee TW, Oura H, Nonaka G, Nishioka I. Effect of magnesium lithospermate B in rats with sodium-induced hypertension and renal failure. Nephron 1992; 60: 460-5. 5 Fung KP, Wu J, Zeng LH, Wong HN, Lee CM, Hon PM, et al. Lithospermic acid B as an antioxidant-based protector of cultured ventricular myocytes and aortic endothelial cells of rabbits. Life Sci 1993; 53: PL189-93. 6 Yokozawa T, Chung HY, Dong E, Oura H. Confirmation that magnesium lithospermate B has a hydroxyl radical- scavenging action. Exp Toxicol Pathol 1995; 47: 341-4. 7 Kasimu R, Tanaka K, Tezuka Y, Gong ZN, Li JX, Basnet P, et al. Comparative study of seventeen Salvia plants: aldose reductase inhibitory activity of water and MeOH extracts and liquid chromatography-mass spectrometry (LC- MS) analysis of water extracts. Chem Pharm Bull (Tokyo) 1998; 46: 500-4. 8 Wu XJ, Wang YP, Wang W, Sun WK, Xu YM, Xuan LJ. Free radical scavenging and inhibition of lipid peroxidation by magnesium lithospermate B. Acta Pharmacol Sin 2000; 21: 855-8. 9 Cheng TO. Danshen: a versatile Chinese herbal drug for the treatment of coronary heart disease. Int J Cardiol 2006; 113: 437-8. 10 Ji XY, Tan BK, Zhu YZ. Salvia miltiorrhiza and ischemic diseases. Acta Pharmacol Sin 2000; 21: 1089-94. 11 Xu W, Yang J, Wu LM. Cardioprotective effects of tanshinone IIA on myocardial ischemia injury in rats. Pharmazie 2009; 64: 332-6. 12 Pan C, Lou L, Huo Y, Singh G, Chen M, Zhang D, et al. Salvianolic acid B and Tanshinone IIA attenuate myocardial ischemia injury in mice by NO production through multiple pathways. Ther Adv Cardiovasc Dis 2011; 5: 99-111. 13 Ren ZH, Tong YH, Xu W, Ma J, Chen Y. Tanshinone II A attenuates inflammatory responses of rats with myocardial infarction by reducing MCP-1 expression. Phytomedicine 2010; 17: 212-8. 14 Dong K, Xu W, Yang J, Qiao H, Wu L. Neuroprotective effects of Tanshinone IIA on permanent focal cerebral ischemia in mice. Phytother Res 2009; 23: 608-13. 15 Tzen JT, Jinn TR, Chen YC, Li FY, Cheng FC, Shi LS, et al. Magnesium lithospermate B possesses inhibitory activity on Na+,K+-ATPase and neuroprotective effects against ischemic stroke. Acta Pharmacol Sin 2007; 28: 609-15. 16 Chen RJ, Jinn TR, Chen YC, Chung TY, Yang WH, Tzen JT. Active ingredients in Chinese medicines promoting blood circulation as Na+/K+ -ATPase inhibitors. Acta Pharmacol Sin 2011; 32: 141-51. 17 Aronson JK. Digoxin revisited. QJM 1998; 91: 713. 18 Riviere EJ, Papich GM. Veterinary Pharmacology & Therapeutics 9ed. Wiley-Blackwell 2009. 19 Haft JI, Shahabadi AE, Fano A. Clinical experience with ouabain administered in small divided doses in the monitored patient. Chest 1973; 63: 868-74. 20 Schonfeld W, Weiland J, Lindig C, Masnyk M, Kabat MM, Kurek A, et al. The lead structure in cardiac glycosides is 5 beta, 14 beta-androstane-3 beta 14-diol. Naunyn Schmiedebergs Arch Pharmacol 1985; 329: 414-26. 21 Schatzmann HJ. [Cardiac glycosides as inhibitors of active potassium and sodium transport by erythrocyte membrane]. Helv Physiol Pharmacol Acta 1953; 11: 346-54. 22 Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. 1957. Biochim Biophys Acta 1989; 1000: 439-46. 23 Ogawa H, Shinoda T, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci U S A 2009; 106: 13742-7. 24 Aperia A. New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. J Intern Med 2007; 261: 44-52. 25 Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 1998; 275: F633-50. 26 Kyte J. Molecular considerations relevant to the mechanism of active transport. Nature 1981; 292: 201-4. 27 Blanco G, DeTomaso AW, Koster J, Xie ZJ, Mercer RW. The alpha-subunit of the Na,K-ATPase has catalytic activity independent of the beta-subunit. J Biol Chem 1994; 269: 23420-5. 28 Shull GE, Greeb J, Lingrel JB. Molecular cloning of three distinct forms of the Na+,K+-ATPase alpha-subunit from rat brain. Biochemistry 1986; 25: 8125-32. 29 Xu KY, Zhu W, Chen L, Defilippi C, Zhang J, Xiao RP. Mechanistic distinction between activation and inhibition of (Na(+)+K(+))-ATPase-mediated Ca(2+) influx in cardiomyocytes. Biochem Biophys Res Commun 2011; 406: 200-3. 30 Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 1952; 116: 449-72. 31 Martin DW. Structure-function relationships in the NA+,K+-pump. Semin Nephrol 2005; 25: 282-91. 32 Joubert PH, Grossmann M. Local and systemic effects of Na+/K+ATPase inhibition. Eur J Clin Invest 2001: 31 suppl 2: 1-4. 33 Janvier NC, Boyett MR. The role of Na-Ca exchange current in the cardiac action potential. Cardiovasc Res 1996; 32: 69-84. 34 Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem 1957; 7: 255-318. 35 Norman C, Rall JA, Tikunova SB, Davis JP. Modulation of the rate of cardiac muscle contraction by troponin C constructs with various calcium binding affinities. Am J Physiol Heart Circ Physiol 2007; 293: H2580-7. 36 Wu SH, Ryvarden L, Chang TT. Antrodia camphorata (“niu- chang-chih”), new combination of a medicinal fungus in Taiwan. Bot Bull Acad Sin 1997; 38: 273-5. 37 Chang TT, Chou WN. Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan. Botanical Bulletin Academia Sinica 2004; 45: 347-52. 38 Chang TT, Chou WN. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol Res 1995; 99: 756- 8. 39 Chen JC, Lin WH, Chen CN, Sheu SJ, Huang SJ, Chen YL. Development of Antrodia camphorata mycelium with submerge culture. Fung Sci 2001; 16: 7-22. 40 Chang CY, Lue MY, Pan TM. Determination of adenosine, cordycepin and ergosterol contents in cultivated Antrodia camphorata by HPLC method. J FOOD DRUG ANAL 2005; 13: 338-42. 41 Ao ZH, Xu ZH, Lu ZM, Xu HY, Zhang XM, Dou WF. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J Ethnopharmacol 2009; 121: 194- 212. 42 Chen CJ, Su CH, Lan MH. Study on Solid Cultivation and Bioactivity of Antrodia Camphorata. Fung Sci 2001; 16: 65-72. 43 Hseu YC, Wu FY, Wu JJ, Chen JY, Chang WH, Lu FJ, et al. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol 2005; 5: 1914-25. 44 Shen YC, Wang YH, Chou YC, Chen CF, Lin LC, Chang TT, et al. Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Med 2004; 70: 310-4. 45 Liu DZ, Liang HJ, Chen CH, Su CH, Lee TH, Huang CT, et al. Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid- state culture of Taiwanofungus camphoratus in microglia and the mechanism of its action. J Ethnopharmacol 2007; 113: 45-53. 46 Huang CH, Chang YY, Liu CW, Kang WY, Lin YL, Chang HC, et al. Fruiting body of Niuchangchih (Antrodia camphorata) protects livers against chronic alcohol consumption damage. J Agric Food Chem 2010; 58: 3859-66. 47 Dai YY, Chuang CH, Tsai CC, Sio HM, Huang SC, Chen JC, et al. The protection of Antrodia camphorata against acute hepatotoxicity of alcohol in rats. J Food Drug Anal 2003; 11: 177-85. 48 Rao YK, Fang SH, Tzeng YM. Evaluation of the anti- inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol 2007; 114: 78-85. 49 Hsu YL, Kuo YC, Kuo PL, Ng LT, Kuo YH, Lin CC. Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett 2005; 221: 77-89. 50 Hench PS, Kendall E, Slocumb CH. The effect of a hormone of the adrenal cortex (17-hydroxy-11 dehydrocorticosterone: compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis: preliminary report. Proc Staff Meet Mayo Clin 1949; 24: 181-97. 51 Werbin H, Chaikoff IL. Utilization of adrenal gland cholesterol for synthesis of cortisol by the intact normal and the ACTH-treated guinea pig. Arch Biochem Biophys 1961; 93: 476-82. 52 Locatelli V, Bresciani E, Tamiazzo L, Torsello A. Central nervous system-acting drugs influencing hypothalamic-pituitary-adrenal axis function. Endocr Dev 2010; 17: 108-20. 53 Breuner CW, Orchinik M. Plasma binding proteins as mediators of corticosteroid action in vertebrates. J Endocrinol 2002; 175: 99-112. 54 Lewis JG, Bagley CJ, Elder PA, Bachmann AW, Torpy DJ. Plasma free cortisol fraction reflects levels of functioning corticosteroid-binding globulin. Clin Chim Acta 2005; 359: 189-94. 55 Munck A, Brinck-Johnsen T. Specific and nonspecific physicochemical interactions of glucocorticoids and related steroids with rat thymus cells in vitro. J Biol Chem 1968; 243: 5556-65. 56 Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985; 318: 635-41. 57 McKenna NJ, Lanz RB, O''Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 1999; 20: 321-44. 58 Neeck G. Fifty years of experience with cortisone therapy in the study and treatment of rheumatoid arthritis. Ann N Y Acad Sci 2002; 966: 28-38. 59 Longui CA. Glucocorticoid therapy: minimizing side effects. J Pediatr 2007; 83: S163-77. 60 Hollenberg SM, Evans RM. Multiple and cooperative trans- activation domains of the human glucocorticoid receptor. Cell 1988; 55: 899-906. 61 Dahlman-Wright K, Baumann H, McEwan IJ, Almlof T, Wright AP, Gustafsson JA, et al. Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor. Proc Natl Acad Sci U S A 1995; 92: 1699-703. 62 Zhou J, Cidlowski JA. The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 2005; 70: 407-17. 63 Duma D, Jewell CM, Cidlowski JA. Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J Steroid Biochem Mol Biol 2006; 102: 11- 21. 64 Freedman LP, Luisi BF. On the mechanism of DNA binding by nuclear hormone receptors: a structural and functional perspective. J Cell Biochem 1993; 51: 140-50. 65 Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 2002; 110: 93-105. 66 Kauppi B, Jakob C, Farnegardh M, Yang J, Ahola H, Alarcon M, et al. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J Biol Chem 2003; 278: 22748-54. 67 Tanenbaum DM, Wang Y, Williams SP, Sigler PB. Crystallographic comparison of the estrogen and progesterone receptor''s ligand binding domains. Proc Natl Acad Sci U S A 1998; 95: 5998-6003. 68 Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids 2010; 75: 1-12. 69 Bourguet W, Germain P, Gronemeyer H. Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci 2000; 21: 381-8. 70 Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228: 111-33. 71 De Bosscher K, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 2009; 23: 281-91. 72 Wallace AD, Cidlowski JA. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J Biol Chem 2001; 276: 42714-21. 73 Galliher-Beckley AJ, Cidlowski JA. Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life 2009; 61: 979-86. 74 Baschant U, Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol 2010; 120: 69-75. 75 De Bosscher K, Vanden Berghe W, Haegeman G. Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol 2000; 109: 16-22. 76 Xu J, Fan G, Chen S, Wu Y, Xu XM, Hsu CY. Methylprednisolone inhibition of TNF-alpha expression and NF-kB activation after spinal cord injury in rats. Brain Res Mol Brain Res 1998; 59: 135-42. 77 Liberman AC, Druker J, Perone MJ, Arzt E. Glucocorticoids in the regulation of transcription factors that control cytokine synthesis. Cytokine Growth Factor Rev 2007; 18: 45-56. 78 De Bosscher K, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 2009; 23: 281-91. 79 Huxford T, Huang DB, Malek S, Ghosh G. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 1998; 95: 759- 70. 80 Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci U S A 1994; 91: 752-6. 81 Wissink S, van Heerde EC, vand der Burg B, van der Saag PT. A dual mechanism mediates repression of NF-kappaB activity by glucocorticoids. Mol Endocrinol 1998; 12: 355-63. 82 Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF- kappa B activity through induction of I kappa B synthesis. Science 1995; 270: 286-90. 83 Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 240-6. 84 Tao Y, Williams-Skipp C, Scheinman RI. Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-kappa B and induction of apoptosis. J Biol Chem 2001; 276: 2329-32.
摘要: 
植物藥已經被作為中草藥的來源,從過去到現在持續的作為許多藥物的使用依據。本論文的研究主題,是研究丹參酚酸鎂鹽B (MLB) 活血化瘀與樟芝酸A (antcin A) 抗發炎的分子機制。過去的研究顯示,丹參酚酸鎂鹽B能夠抑制鈉鉀幫浦;本實驗結果顯示,丹參酚酸鎂鹽B與哇巴因 (ouabain, 強心配醣體) 相同,都能夠使神經細胞內的鈣離子增加;而鈣離子的來源是藉由鈉鈣交換蛋白,將細胞外的鈣離子送入細胞內,以及內質網膜上的IP3通道,將鈣離子釋放至細胞質中;利用分子模擬分析顯示,丹參酚酸鎂鹽B與哇巴因,均可與鈉鉀幫浦形成五個氫鍵;丹參酚酸鎂鹽B並不會使細胞的形態有所改變,綜合上述結果,丹參酚酸鎂鹽B與哇巴因相同,皆具有抑制鈉鉀幫浦的能力並啟動下游相同的機制,因此,丹參酚酸鎂鹽B具有潛力,開發作為心臟疾病的治療用藥。
牛樟芝是臺灣特有的藥用真菌,其良好的抗發炎效果已經有文獻報導,同時該療效也被使用者所認同;由本論文結果顯示,樟芝酸A的結構與醣皮質激素中的cortisone結構相似;並且與醣皮質激素相同,皆能夠使醣皮質激素受體進入細胞核內,但樟芝酸A所需要的有效濃度高於醣皮質激素,才能驅使醣皮質激素受體進入細胞核內;分子模擬結果顯示,樟芝酸A所形成的氫鍵數少於醣皮質激素中的dexamethasone;綜合上述實驗結果,顯示樟芝酸A對於牛樟芝的抗發炎效果是有所貢獻的,它模擬醣皮質激素啟動了受體進入細胞核,經由基因的調控抑制發炎。

Botanical remedies have been used as a source of traditional Chinese medicines throughout history and continue to serve as the basis for many pharmaceuticals used today. This study focused on the molecular mechanism of magnesium lithospermate B (MLB) and antcin A in the promotion of blood circulation and anti-inflammation. Previous studies have indicated that the MLB extract from the Danshen (Salvia miltiorrhiza Bunge) inhibits the activity of Na+/K+-ATPase. The results of Chapter 1 demonstrate that the increase in intracellular free Ca2+ levels follows similar patterns when MLB and ouabain were used to treat neuroblastoma cells. Intracellular free Ca2+ is obtained from outside the cell via the Na+/Ca2+ exchanger and IP3 channel of the ER membrane. Both MLB and ouabain are equivalent, forming 5 hydrogen bonds in the Na+/K+-ATPase cavity. There was a change in dendrite morphology under ouabain treatment, but not under MLB. Comparable to ouabain, MLB triggered the same mechanism by inhibiting Na+/K+-ATPase, and it possesses more potential as a botanical medicine for cardiac disease.
Niuchangchih (Antrodia camphorata, syn. Taiwanofungus camphoratus) is a unique medicinal fungus found in Taiwan. Its anti-inflammatory effect has been reported, and consumer experience attests to this. The results in Chapter 2 demonstrate that the structure of antcin A, extracted from the fruiting bodies of Niuchangchih, is similar to that of the glucocorticoid cortisone. Examination of the nuclear migration of the glucocorticoid receptor (GR) effect demonstrated that antcin A and glucocorticoids both migrate into the nucleus and the minimal effective concentration of antcin A exceeds that of glucocorticoids. Molecular modeling indicated that antcin A forms hydrogen bonds less than the glucocorticoid dexamethasone. In the study, the anti-inflammatory effect of Niuchangchih should be partly attributed to antcin A, which mimics glucocorticoids and triggers translocation of the GR into the nucleus to initiate suppression of inflammation via gene regulation.
URI: http://hdl.handle.net/11455/36302
其他識別: U0005-2604201123555000
Appears in Collections:生物科技學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.