Please use this identifier to cite or link to this item:
標題: 文心蘭B群MADS box基因之功能分析與應用
Functional Analysis and the Application of the B class MADS box genes in Oncidium Gower Ramsey
作者: 簡誌良
Chien, Chih-Liang
關鍵字: Oncidium;文心蘭;MADS box gene;protocorm-like body;MADS box 基因;擬圓球體
出版社: 生物科技學研究所
引用: 邱崇益。2010。調控文心蘭花色形成機制之研究。國立台灣大學植物科學研究所博士論文。台灣:台北。 胡正榮。2000。文心蘭類之花粉發育、花粉活力、結實及無菌播種之研究。國立台灣大學園藝學系碩士論文。台灣:台北。 高乃萱。2007。文心蘭中B 功能性MADS Box 基因之選殖與特性分析。國立中興大學生物科技學研究所碩士論文。台灣:台中。 張玉雲。2009。植物花朵發育與開花時間相關基因之研究。國立中興大學生物科技學研究所博士論文。台灣:台中。 梁玉玲。2008。文心蘭之MADS Box基因及其下游調控基因之功能性分析。國立中興大學生物科技研究所碩士論文。台灣:台中。 Alimohammadi, M. and M.B. Bagherieh-Najjar. 2009. Agrobacterium-mediated transformation of plants: Basic principles and influencing factors. Afr. J. Biotechnol. 8:5142-5148. Belarmino, M.M. and M. Mii. 2000. Agrobacterium-mediated genetic transformation of a phalaenopsis orchid. Plant Cell Rep 19:435-442. Berbel, A., C. Navarro, C. Ferrandiz, L.A. Canas, J.P. Beltran, and F. Madueno. 2005. Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiol 139:174-185. Bowman, J.L., D.R. Smyth, and E.M. Meyerowitz. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1:37-52. Causier, B., Z. Schwarz-Sommer, and B. Davies. 2010. Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol 21:73-79. Chai, M.L., C.J. Xu, K.K. Senthil, J.Y. Kim, and D.H. Kim. 2002. Stable transformation of protocorm-like bodies in Phalaenopsis orchid mediated by Agrobacterium tumefaciens. Sci Hortic-Amsterdam 96:213-224. Chang, Y.Y., N.H. Kao, J.Y. Li, W.H. Hsu, Y.L. Liang, J.W. Wu, and C.H. Yang. 2010. Characterization of the possible roles for B Class MADS box genes in regulation of perianth formation in Orchid. Plant Physiol 152:837-853. Chen, S., P. Songkumarn, J. Liu, and G.L. Wang. 2009. A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111-1121. Chen, W.H., C.Y. Hsu, H.Y. Cheng, H. Chang, H.H. Chen, and M.J. Ger. 2011. Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Rep 30:1007-1017. Chin, D.P., K.-i. Mishiba, and M. Mii. 2007. Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium. Plant Cell Rep 26:735-743. Chiou, C.Y., K. Wu, and K.W. Yeh. 2008. Characterization and promoter activity of chromoplast specific carotenoid associated gene (CHRC) from Oncidium Gower Ramsey. Biotechnol Lett 30:1861-1886. Chiou, C.Y. and K.W. Yeh. 2008. Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey. Plant Mol Biol 66:379-388. Coen, E.S. and E.M. Meyerowitz. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31-37. Cozzolino, S. and A. Widmer. 2005. Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487-494. De Bodt, S., J. Raes, Y.V. Van de Peer, and G. Theissen. 2003. And then there were many: MADS goes genomic. Trends in Plant Sci. 8:475-483. de Martino, G., I. Pan, E. Emmanuel, A. Levy, and V.F. Irish. 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18:1833-1845. Ditta, G., A. Pinyopich, P. Robles, S. Pelaz, and M.F. Yanofsky. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935-1940. Dornelas, M.C., C.M. Patreze, G.C. Angenent, and R.G.H. Immink. 2011. MADS: the missing link between identity and growth? Trends in Plant Sci 16:89-97. Fan, H.Y., Y. Hu, M. Tudor, and H. Ma. 1997. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J 12:999-1010. Favaro, R. 2003. MADS-Box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603-2611. Haughn, G.W. and C.R. Somerville. 1988. Genetic control of morphogenesis in Arabidopsis. Dev Genet 9:73-89. Hiratsu, K., K. Matsui, T. Koyama, and M. Ohme-Takagi. 2003. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733-739. Honma, T. and K. Goto. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525-529. Hsu, H.F. and C.H. Yang. 2002. An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol 43:1198-1209. Huang, H., M. Tudor, T. Su, Y. Zhang, Y. Hu, and H. Ma. 1996. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell 8:81-94. Huijser, P., J. Klein, W.E. Lonnig, H. Meijer, H. Saedler, and H. Sommer. 1992. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11:1239-1249. Immink, R.G., S. Ferrario, J. Busscher-Lange, M. Kooiker, M. Busscher, and G.C. Angenent. 2003. Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics 268:598-606. Immink, R.G., K. Kaufmann, and G.C. Angenent. 2010. The ''ABC'' of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 21:87-93. Immink, R.G.H., I.A.N. Tonaco, S. de Folter, A. Shchennikova, A.D.J. van Dijk, J. Busscher-Lange, J.W. Borst, and G.C. Angenent. 2009. SEPALLATA3: the ''glue'' for MADS box transcription factor complex formation. Genome Biol 10:R24.1-R24.16. Jack, T. 2004. Molecular and genetic mechanisms of floral control. Plant Cell 16 suppl:S1-S17. Kang, H.G., J.S. Jeon, S. Lee, and G. An. 1998. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 38:1021-1029. Kanno, A., M. Nakada, Y. Akita, and M. Hirai. 2007. Class B gene expression and the modified ABC model in nongrass monocots. ScientificWorldJournal 7:268-279. Kanno, A., H. Saeki, T. Kameya, H. Saedler, and G. Theissen. 2003. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52:831-841. Kater, M.M., L. Dreni, and L. Colombo. 2006. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57:3433-3444. Kaufmann, K., R. Melzer, and G. Theissen. 2005. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183-198. Kim, S.T., M.J. Yoo, V.A. Albert, J.S. Farris, P.S. Soltis, and D.E. Soltis. 2004. Phylogeny and diversification of B-function MADS-box genes in angiosperms: Evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91:2102-2118. Kim, S.Y., P.Y. Yun, T. Fukuda, T. Ochiai, J. Yokoyama, T. Kameya, and A. Kanno. 2007. Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci 172:319-326. Kramer, E.M., R.L. Dorit, and V.F. Irish. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765-783. Kramer, E.M., H.J. Su, C.C. Wu, and J.M. Hu. 2006. A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evol Biol 6:30. Krizek, B.A. and E.M. Meyerowitz. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122:11-22. Li, G.S., Z. Meng, H.Z. Kong, Z.D. Chen, and A.M. Lu. 2003. ABC model and floral evolution. Chinese Sci Bull 48:2651-2657. Liau, C.H., S.J. You, V. Prasad, H.H. Hsiao, J.C. Lu, N.S. Yang, and M.T. Chan. 2003. Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep 21:993-998. Litt, A. 2007. An evaluation of A-function: Evidence from the APETALA1 and APETALA2 gene lineages. Int J Plant Sci 168:73-91. Liu, Y., N. Nakayama, M. Schiff, A. Litt, V.F. Irish, and S.P. Dinesh-Kumar. 2004. Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Mol Biol 54:701-711. Lu, H.C., H.H. Yeh, H.H. Chen, W.C. Tsai, W.H. Chen, H.J. Su, and D.C.N. Chang. 2007. Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol 143:558-569. McGonigle, B., K. Bouhidel, and V.F. Irish. 1996. Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev 10:1812-1821. Men, S.Z., X.T. Ming, R.W. Liu, C.H. Wei, and Y. Li. 2003. Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell Tiss Org 75:63-71. Mishiba, K., D.P. Chin, and M. Mii. 2005. Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Rep 24:297-303. Mondragon-Palomino, M., L. Hiese, A. Harter, M.A. Koch, and G. Theissen. 2009. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evol Biol 9:81. Mondragon-Palomino, M. and G. Theissen. 2008. MADS about the evolution of orchid flowers. Trends in Plant Sci 13:51-59. Mondragon-Palomino, M. and G. Theissen. 2009. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann Bot 104:583-594. Mondragon-Palomino, M. and G. Theissen. 2011. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ''orchid code''. Plant J 66:1008-1019. Nakamura, T., T. Fukuda, M. Nakano, M. Hasebe, T. Kameya, and A. Kanno. 2005. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Mol Biol 58:435-445. Norman, C., M. Runswick, R. Pollock, and R. Treisman. 1988. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989-1003. Olimpieri, I. and A. Mazzucato. 2008. Phenotypic and genetic characterization of the pistillate mutation in tomato. Theor Appl Genet 118:151-163. Parcy, F., K. Bomblies, and D. Weigel. 2002. Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129:2519-2527. Passmore, S., G.T. Maine, R. Elble, C. Christ, and B.K. Tye. 1988. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells. J Mol Biol 204:593-606. Pelaz, S., G.S. Ditta, E. Baumann, E. Wisman, and M.F. Yanofsky. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203. Pelaz, S., C. Gustafson-Brown, S.E. Kohalmi, W.L. Crosby, and M.F. Yanofsky. 2001. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385-394. Pinyopich, A., G.S. Ditta, B. Savidge, S.J. Liljegren, E. Baumann, E. Wisman, and M.F. Yanofsky. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85-88. Pnueli, L., M. Abu-Abeid, D. Zamir, W. Nacken, Z. Schwarz-Sommer, and E. Lifschitz. 1991. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1:255-266. Purugganan, M.D. 1997. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J Mol Evol 45:392-396. Qin, G., H. Gu, L. Ma, Y. Peng, X.W. Deng, Z. Chen, and L.J. Qu. 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17:471-482. Raffeiner, B., M. Serek, and T. Winkelmann. 2009. Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell Tiss Org 98:125-134. Riechmann, J.L., B.A. Krizek, and E.M. Meyerowitz. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A 93:4793-4798. Sablowski, R.W.M. and E.M. Meyerowitz. 1998. A Homolog of NO APICAL MERISTEM Is an Immediate Target of the Floral Homeotic Genes APETALA3/PISTILLATA. Cell 92:93-103. Sommer, H., J.P. Beltran, P. Huijser, H. Pape, W.E. Lonnig, H. Saedler, and Z. Schwarz-Sommer. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605-613. Teeri, T.H., A. Uimari, M. Kotilainen, R. Laitinen, H. Help, P. Elomaa, and V.A. Albert. 2006. Reproductive meristem fates in Gerbera. J Exp Bot 57:3445-3455. Theißen, G. 2001. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75-85. Theißen, G. and H. Saedler. 1999. The golden decade of molecular floral development (1990-1999): A cheerful obituary. Dev Genet 25:181-193. Theißen, G. and H. Saedler. 2001. Plant biology. Floral quartets. Nature 409:469-471. Theissen, G., A. Becker, A. Di Rosa, A. Kanno, J.T. Kim, T. Munster, K.U. Winter, and H. Saedler. 2000. A short history of MADS-box genes in plants. Plant Mol Biol 42:115-149. Theissen, G., J.T. Kim, and H. Saedler. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484-516. Trobner, W., L. Ramirez, P. Motte, I. Hue, P. Huijser, W.E. Lonnig, H. Saedler, H. Sommer, and Z. Schwarz-Sommer. 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11:4693-4704. Tsai, W.C., C.S. Kuoh, M.H. Chuang, W.H. Chen, and H.H. Chen. 2004. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831-844. Tsai, W.C., P.F. Lee, H.I. Chen, Y.Y. Hsiao, W.J. Wei, Z.J. Pan, M.H. Chuang, C.S. Kuoh, W.H. Chen, and H.H. Chen. 2005. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46:1125-1139. Tzeng, T.Y., H.C. Liu, and C.H. Yang. 2004. The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. J Biol Chem 279:10747-10755. Tzeng, T.Y. and C.H. Yang. 2001. A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol 42:1156-1168. van der Krol, A.R., A. Brunelle, S. Tsuchimoto, and N.H. Chua. 1993. Functional analysis of petunia floral homeotic MADS box gene pMADS1. Genes Dev 7:1214-1228. Vandenbussche, M., J. Zethof, S. Royaert, K. Weterings, and T. Gerats. 2004. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16:741-754. Whipple, C.J., P. Ciceri, C.M. Padilla, B.A. Ambrose, S.L. Bandong, and R.J. Schmidt. 2004. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131:6083-6091. Xiao, H., Y. Wang, D. Liu, W. Wang, X. Li, X. Zhao, J. Xu, W. Zhai, and L. Zhu. 2003. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol 52:957-966. Xu, Y., L.L. Teo, J. Zhou, P.P. Kumar, and H. Yu. 2006. Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46:54-68. Yang, Y., L. Fanning, and T. Jack. 2003. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33:47-59. Yang, Y. and T. Jack. 2004. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant Mol Biol 55:45-59. Yanofsky, M.F., H. Ma, J.L. Bowman, G.N. Drews, K.A. Feldmann, and E.M. Meyerowitz. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35-39. Zahn, L.M., B.M. Feng, and H. Ma. 2006. Beyond the ABC-model: Regulation of floral homeotic genes. Adv Bot Res 44:163-207. Zhang, L., D.P. Chin, M. Fukami, H. Ichikawa, I. Nakamura, and M. Mii. 2010a. Agrobacterium-mediated genetic transformation of Cattleya with an Odontoglossum ringspot virus replicase gene sequence. Plant Biotechnol-Nar 27:421-426. Zhang, L., D.P. Chin, and M. Mii. 2010b. Agrobacterium-mediated transformation of protocorm-like bodies in Cattleya. Plant Cell Tiss Org 103:41-47.
為了瞭解南西文心蘭花器的發育機制,從已知的文心蘭MADS基因中選殖具花被特異表達的B群功能性MADS box 基因,OMADS5及OMADS9進行研究。此二個基因屬paleoAP3的分支,其基因表達量OMADS5 mRNA不在唇瓣表現外,在三唇瓣突變株中的表現量也有明顯的下降;OMADS9 mRNA除了表現在花瓣及唇瓣部位,三唇瓣中唇瓣化的部位也有很高的表現量。由此認為OMADS5在唇瓣的形成可能扮演負調控的角色。為了直接瞭解在文心蘭中OMADS5對唇瓣發育的關係,在本篇研究中我們從文心蘭基因體DNA中藉由基因體步行的方式選殖出約2.3 kb的OMADS5啟動子。此外我們將含有35S::OMADS5的pEpyon-32H藉由農桿菌EHA105轉入45天大的文心蘭擬圓球體(PLBs)中,再將受感染的PLBs放置在含有8 μg/ml hygromycin的G10培養基中篩選。接著萃取非轉殖株及轉殖株PLB的全部DNA,以抗性基因(hptII)和OMADS5基因進行PCR來鑑定轉基因植物。為增加轉基因的成功率,利用不同品系文心蘭PLB進行轉基因測試,並以效率佳者作為35S::OMADS5及35S::OMADS9基因轉殖的材料。為了藉由農桿菌基因轉殖而以基因靜默的方式探討OMADS5及OMADS9的功能並且針對文心蘭花形進行改造,故構築出OMADS5 RANi、OMADS9 RNAi以及OMADS5和OMADS9接上SRDX、VP16蛋白融合序列。我們也從文心蘭基因體中選殖到一段含內含子(intron)的α-tubulin片段,並以此內含子構築出文心蘭RNAi轉接載體。由於文心蘭的新品種難以產生,所以期望利用分子育種的技術來創造出新的花器型態,因此藉由調控B功能性MADS box基因預期可能使花被發生型態上的改變。未來文心蘭除了可以改變其花色和花的大小之外,還可以創造出具有各式各樣不同花形的文心蘭。

To investigate floral formation in Oncidium ‘Gower Ramsey', two paleoAPETALA3 (paleoAP3) genes, O. Grower Ramsey MADS box gene5 (OMADS5) and OMADS9 were characterized in our laboratory. The OMADS5 mRNA was absent in lips and was significantly down-regulated in lip-like organs in the peloric mutant flowers. In addition, the mRNA for OMADS9 was expressed in lip and petals and a high amount of OMADS9 expression was also observed in lip-like organs of peloric mutant flowers. This suggested a possible negative role for OMADS5 in regulating lip formation. To explore the function of OMADS5 in lip formation, we first cloned OMADS5 promoter with 2.3 kb by genomic walking. In addition, the vector pEpyon-32H containing OMADS5 was transformed into 45-day-old Oncidium protocorm-like body (PLB) via Agrobacterium tumefaciens. The transformants were selected by 8 μg/ml hygromycin G10 medium. To confirm that these plants were transformants, total DNA was isolated and analyzed by PCR from PLBs of four transgenic plants to find the appearance of the antibiotic resistant gene (hptII) and OMADS5 gene. We further used new PLB with high efficiency of transformation to perform the 35S::OMADS5 and 35S::OMADS9 transformation. Furthermore, to modify the floral shape of Oncidium, OMADS5 RNAi and OMADS9 RNAi as well as OMADS5/OMADS9 fused with either SRDX or VP16 sequence were constructed and transformed into Oncidium. In order to obtain a useful RNAi transferred construct in Oncidium, an α-tubulin intron from Oncidium genomic DNA was cloned. New Oncidium varieties are difficult to generate; hence molecular breeding is an attractive approach to create a new flower shape. It is expected that the manipulation of B function MADS box genes in this study will potentially convert perianths into differential shapes.
其他識別: U0005-2607201120191600
Appears in Collections:生物科技學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.