Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3632
標題: 製備多孔結構固態高分子薄膜及其於染料敏化太陽能電池之應用
Fabrication of Porous Polymer Thin Films and Its Application in Dye-Sensitized Solar Cells
作者: 許翰昇
Shiu, Han-Sheng
關鍵字: dye-sensitized solar cell;染料敏化太陽能電池;porous polymer thin film;spin coating;孔洞高分子薄膜;旋轉塗佈
出版社: 化學工程學系所
引用: 1. M. Grätzel, “Photoelectrochemical cells ”, Nature, Vol. 414(15), pp. 338-344 (2001). 2. M. A. Green, “Silicon solar cells: evolution, high-efficiency design and efficiency enhancements”, Semiconductor Science and Technology, Vol. 8, pp. 1-12 (1993). 3. A. J. Waldau, “Status of thin films solar cells in research, production and the market”, Solar Energy, Vol. 77, pp. 667-678 (2004). 4. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, Vol. 353(24), pp.737-740 (1991). 5. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, Journal of the American Chemical Society, Vol. 115(14), pp. 6382-6390 (1993). 6. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, Journal of the American Ceramic Society, Vol. 80(12), pp. 3157-3171 (1997). 7. A. Kay and M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Solar Energy Materials and Solar Cells, Vol. 44, pp. 99-117 (1996). 8. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, Journal of the American Chemical Society, Vol. 123, pp. 1613-1624 (2001). 9. M. Grätzel, “Dye-seneitized solar cells”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 4, pp. 145-153 (2003). 10. R. Komiya, L. Han, R. Yamanaka, A. Islam, T. Mitate, “Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 123-127 (2004). 11. http://www.solarserver.de/wissen/photovoltaik-e.html 12. 蔡進譯,“超高效率太陽能電池-從愛因斯坦的光電效應談起”,物理雙月刊,27卷5期,pp. 701-719 (2005). 13. D. M. Chapin, C. S. Fuller, G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, Vol. 25, pp. 676-677 (1954). 14. A. Geoetzberger, C. Hebling, H. W. Schock, “Photovoltaic materials, history, status and outlook”, Materials Science and Engineering R: Reports, Vol. 40, pp. 1-46 (2003). 15. J. Zhao, A. Wang, M. A. Green, “19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Applied Physics Letters, Vol. 73, pp. 1991-1993 (1998). 16. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, “Photovoltaic Technology: The Case for Thin Film Solar Cells”, Science , Vol. 285(30), pp. 692-698 (1999). 17. A. Geoetzberger, J. Luther, G. Willeke, “Solar cells: past, present, future”, Solar Energy Materials Solar Cells, Vol. 74, pp. 1-11 (2002). 18. V. Parente, J. Goldemberg, R. Zilles, “Comments on Experience Curves for PV Module”, Progess in Photovoltaics: Research. and Applications, Vol. 10, pp. 571-574 (2002). 19. M. A. Green, K. Emery, D. L. King, S. Igari, W. Warta, “Solar Cell Efficiency Tables(Version 25)”, Progess in Photovoltaics: Research and applications, Vol. 11, pp. 49-54 (2005). 20. H. Meier, “Sensitization of Electrical Effects in Solids”, Journal of Physical Chemistry, Vol. 69(3), pp. 719- 729 (1965). 21. R. Memming and H. Tributsch, “Electrochemical investigations on the spectral sensitization of gallium phosphide electrodes”, Journal of Physical Chemistry, Vol. 75(4), pp. 562-570 (1971). 22. M. Grätzel, “Converion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 3-14 (2004). 23. K. Kalyanasundaram, M. Grätzel, “Application of functionalized transition metal complexes in photonic and optoelectronic devices”, Coordination Chemistry Reviews, Vol. 177, pp. 347-414 (1998). 24. P. M. Sommeling, M. Späth, J. Kroon, R. Kinderman, J.van Roosmalen, “Flexible Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, Proceedings of the 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, 1–5 May, 2000. 25. F. Pichot, J. R. Pitts, B. A. Gregg, “Low-Temperature Sinter of TiO2 Colloids: Application to Flexible Dye-Sensitized Solar Cells”, Langmuir, Vol. 16, pp. 5626-5630 (2000). 26. N. G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, Journal of Physical Chemistry B, Vol. 104, pp. 8989-8994 (2000). 27. A. Hagfeldt, B. Didrisksson, T. Palmqvist, H. Lindstrom, S. Sodergren, H. Rensmo, S. Lindquist, “Verification of high efficiencies for the Grätzel-cell. A 7% efficient solar cell based on dye-sensitized colloidal TiO2 films”, Solar Energy Materials and Solar Cells, Vol. 31, pp. 481-488 (1994). 28. M. M. Gömez, J. Rodrigueza, S. E. Lindquist, C. G. Granqvist, “Photoelectrochemical studies of dye-sensitized polycrystalline titanium oxide thin films prepared by sputtering”, Thin Solid Films, Vol. 342, pp.148-152 (1999). 29. M. M. Gömez, J. Lu, E. Olsson, A. Hagfeldt, C. G. Granqvist , “High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films”, Solar Energy Materials and Solar Cells, Vol. 64, pp. 385-392 (2000). 30. M. OKuya, K. Nakade, S. Kaneko, “Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, Vol. 70, pp. 425-435 (2001). 425. 31. S. Lee, Y. Jun, K. J. Kim, D. Kim, “Modification of electrodes in nanocrystalline dye-sensitized TiO2 solar cells”, Solar Energy Materials and Solar Cells, Vol. 65, pp. 193-200 (2001). 32. A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics”, Account of Chemical Research, Vol. 33(5), pp. 269-277 (2000). 33. M. KNazzeruddin, R. H. Baker, P .Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, Journal of Physical Chemistry B, Vol. 107, pp. 8981-8987 (2003). 34. M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorganic Chemistry, Vol. 44, pp. 6841-6851 (2005). 35. G.. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells”, Solar Energy Materials Solar Cells, Vol. 70, pp. 85-101 (2001). 36. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson, A. Azam, M. Grätzel, “The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications”, Journal of the electrochemical Society, Vol. 143(10), pp. 3099-3108 (1996). 37. A. Stanley, B. Verity, D. Matthews, “Minimizing the dark current at the dye-sensitized TiO2 electrode”, Solar Energy Materials Solar Cells, Vol. 52, pp. 141-154 (1998). 38. T. Kato, A. Okazaki, S. Hayase, “Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells”, Chemical Communication, pp. 363-365 (2005). 39. A. Hauch and A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochimica Acta, Vol. 46, pp. 3457-3466 (2001). 40. N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, Journal of the Electrochemical Society, Vol. 144(3), pp. 876-884 (1997). 41. G.. Wang, Y. Lin, X. Xiao, X. Li, W. Wang, “X-ray photoelectron spectroscopy analysis of the stability of platinized catalytic electrodes in dye-sensitized solar cells”, Surface and Interface Analysis, Vol. 36, pp. 1437-1440 (2004). 42. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, “Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 179-182 (2004). 43. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata, “High-performance carbon counter electrode for dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, Vol. 79, pp. 459-469 (2003). 44. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, “I−/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 153-157 (2004). 45. H. Pettersson and T. Gruszecki, “Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods”, Solar Energy Materials and Solar Cells, Vol. 70, pp. 203-212 (2001). 46. P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker, J. M. Kroon, “Long-term stability testing of dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 137-144 (2004). 47. M. G. Kang, K. M. Kim, K. S. Ryu, S. H. Chang, N. G. Park, J. S. Hong, K. J. Kim, “Dye-Sensitized TiO2 Solar Cells Using Polymer Gel Electrolytes Based on PVdF-HFP”, Journal of the Electrochemical Society, Vol. 151(7), pp. E257-E260 (2004). 48. P. Wang, S. M. Zakeeruddin, R. H. Baker, M. Grätzel, “A Binary Ionic Liquid Electrolyte to Achieve 7% Power Conversion Efficiencies in Dye-Sensitized Solar Cells”, Chemistry of Materials, Vol. 16, pp. 2694-2696 (2004). 49. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. Grätzel, “A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells”, Journal of Physical Chemistry B , Vol. 107, pp. 13280-13285 (2003). 50. B. O’Regan, D. T. Schwartz, “Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL''NCS/CuSCN: Initiation and Potential Mechanisms”, Chemistry of Materials, Vol. 10, pp. 1501-1509 (1998). 51. G. P. Smestad, S. Spiekermann, J. Kowalik, C. D. Grant, A. M. Schwartzberg, J. Zhang, L. M. Tolbert, E. Moonse, “A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices”, Solar Energy Materials and Solar Cells, Vol. 76, pp. 85-105 (2003). 52. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Wiessörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies ”, Nature, Vol. 395, pp. 583-585 (1998). 53. S. R. Scully, M. T. Lloyd, R. Herrera, E. P. Giannelis, G. G. Malliaras, “Dye-Sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte”, Synthetic Metals, Vol. 144, pp. 291-296 (2004). 54. D. E. Fenton, J. M. Parker, P. V. Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, Vol. 14, pp. 589 (1973). 55. M. B. Armand, J. M. Chabagno, M. Duclot, Extended Abstract, St. Andrews, Scotland, September, 20-22 (1978). 56. J. R. MacCallum, C. A. Vincent (Eds.), “Polymer Electrolyte Reviews”, Vol. 1, Elsevier Applied Science, London (1987). 57. J. Y. Song, Y. Y. Wang, C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries”, Journal of Power Sources, Vol. 77 , pp. 183-197 (1999). 58. G. Venugopal, J. Moore, J. Howard, S. Pendalwar, “Characterization of microporous separators for lithium-ion batteries”, Journal of Power Sources, Vol. 77, pp. 34-41 (1999). 59. K. Tanaka, A. Takahara, T. Kajiyama, “Film Thickness Dependence of the Surface Structure of Immiscible Polystyrene/Poly(methyl methacrylate) Blends”, Macromolecules, Vol. 29, pp. 3232-3239 (1996). 60. S. Walheim, M. Böltau, J. Mlynek, G. Krausch, U. Steiner, “Structure Formation via Polymer Demixing in Spin-Cast Films”, Macromolecules, Vol. 30, pp. 4995-5003 (1997). 61. L. L. Spangler, J. M. Torkelson, J. S. Royal, “Influence of solvent and molecular weight on thickness and surface topography of spin-coated polymer films”, Polymer Engineering and Science, Vol. 30(11), pp. 644-653 (1990). 62. T. C. Wei, C. C. Wan, Y. Y. Wang, “Preparation and Characterization of a Micro-porous Polymer Electrolyte with Cross-linking Network Structure for Dye-Sensitized Solar Cell”, Solar Energy Materials and Solar Cells, accepted, (2007).
摘要: 
由瑞士學者M. Grätzel提出”染料敏化太陽能電池(Dye-sensitized Solar Cell, DSSC)”之設計概念,大幅地降低太陽能電池之製造成本,同時能量轉化效率值可達商業化使用之等級,因而引起廣泛之討論。但由於染料敏化太陽能電池使用液態電解液之緣故,因此易產生電解液乾涸或外漏之問題。為了解決此問題,本研究將藉由旋轉塗佈與選擇性溶解兩步驟而產生的多孔結構固態高分子薄膜引入電池中,探討液態電解液於其中揮發之情形,因而瞭解置入孔洞固態薄膜對於電池之影響。此外多孔結構固態高分子薄膜亦可扮演原先電池內隔離膜(spacer)之角色,進而達到縮減電池封裝步驟。
實驗結果顯示,利用MEK作為溶劑,並以PS混掺PMMA,再將PMMA以acetic acid蝕刻後之PS多孔結構固態高分子薄膜,具有較佳之孔洞穿透性與較薄之膜厚,且經由電解液揮發度測試得知,此類膜皆能吸附液態電解液,減緩電解液乾涸之問題。並經由AM1.5之光源照射下,發現其中以2wt%PS-2wt%PMMA此比例之薄膜將可得最高之能量轉換效率值,其值為4.58%。

A micro-porous or island-like PS polymer film has been prepared by selectively dissolving PMMA out of a PS-PMMA blend. The film can form as a micro-porous or island-like structure depending on the ratio of PS to PMMA. By introducing this solid film into dye-sensitized solar cell, the liquid electrolyte can be absorbed inside this film and its evaporation rate can be significantly reduced. This polymer film can also serve as a spacer and effectively separate the photo and counter electrodes. The blend ratio can significantly affect the cell's performance, and a conversion efficiency of 4.58% can be obtained with a 2wt%PS-2wt%PMMA blend ratio under AM 1.5 illumination.
URI: http://hdl.handle.net/11455/3632
其他識別: U0005-1407200715280700
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.