Please use this identifier to cite or link to this item:
標題: 大氣電漿改質神經導管材料於周邊神經之應用
The application of nerve conduits materials modified by atmospheric plasma treatment
作者: 林哲永
Lin, Zhe-Yong
關鍵字: Air plasma;接枝;grafing;microgroove;gold nanocomposite;chitosan;PLA;fibroblastic cell growth factor 1;微溝槽;納米金幾丁聚醣;聚乳酸;生長因子
出版社: 化學工程學系所
引用: 1. Evans GR. Challenges to nerve regeneration. Semin Surg Oncol (2000). 2. Belkas, J. S., Shoichet, M. S. & Midha, R. Peripheral nerve regeneration through guidance tubes. Neurol. Res. 26, 151-160 (2004). 3. Molander, H., Olsson, Y., Engkvist, O., Bowald, S. & Eriksson, I. Regeneration of peripheral nerve through a polyglactin tube. Muscle Nerve 5, 54-57 (1982). 4. Keeley, R. D., Nguyen, K. D., Stephanides, M. J., Padilla, J. & Rosen, J. M. The artificial nerve graft: a comparison of blended elastomer-hydrogel with polyglycolic acid conduits. J. Reconstr. Microsurg. 7, 93-100 (1991). 5. Rosen, J. M., Padilla, J. A., Nguyen, K. D., Siedman, J. & Pham, H. N. Artificial nerve graft using glycolide trimethylene carbonate as a nerve conduit filled with collagen compared to sutured autograft in a rat model. J. Rehabil. Res. Dev. 29, 1-12 (1992). 6. Ellis, D. L. & Yannas, I. V. Recent advances in tissue synthesis in vivo by use of collagen-glycosaminoglycan copolymers. Biomaterials 17, 291-299 (1996). 7. den Dunnen, W. F. et al. Poly(DL-lactide-epsilon-caprolactone) nerve guides perform better than autologous nerve grafts. Microsurgery 17, 348-357 (1996). 8. Matsumoto, K. et al. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 868, 315-328 (2000). 9. Mainil-Varlet, P. et al. Polylactide implants and bacterial contamination: an animal study. J. Biomed. Mater. Res. 54, 335-343 (2001). 10. Evans, G. R. et al. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials 23, 841-848 (2002). 11. Jung, D. R. et al. Topographical and physicochemical modification of material surface to enable patterning of living cells. Crit Rev. Biotechnol. 21, 111-154 (2001). 12. Matsuda, T. & Sugawara, T. Control of cell adhesion, migration, and orientation on photochemically microprocessed surfaces. J. Biomed. Mater. Res. 32, 165-173 (1996). 13. Thompson, D. M. & Buettner, H. M. Schwann cell response to micropatterned laminin surfaces. Tissue Eng 7, 247-265 (2001). 14. Yoshinari, M., Matsuzaka, K., Inoue, T., Oda, Y. & Shimono, M. Effects of multigrooved surfaces on fibroblast behavior. J. Biomed. Mater. Res. A 65, 359-368 (2003). 15. Hsu, S. H., Chen, C. Y., Lu, P. S., Lai, C. S. & Chen, C. J. Oriented Schwann cell growth on microgrooved surfaces. Biotechnol Bioeng 92(5). 2005. (1905). 16. Mott-Smith, H. M. & Langmuir, I. The Theory of Collectors in Gaseous Discharges. Phys. Rev. 28, 727-763 (1926). 17. Mar, M. N., Ratner, B. D. & Yee, S. S. An intrinsically protein-resistant surface plasmon resonance biosensor based upon a RF-plasma-deposited thin film. Sensors and Actuators B: Chemical 125-131 (1999). 18. Steuber, F., Staudigel, J. & Simmerer, J. Reduced operating voltage of organic electroluminescent devices by plasma treatment of the indium tin oxide anode. Physics Letters 74, 3558-3660 (1999). 19. Huang, M., Yang, M. & Leng, X. Y. Surface modification of biomaterials by plasma immersion ion implantation. Surface and Coatings Technology 186, 218-226 (2004). 20. Ihara, T., Miyoshi, M., Ando, M. & Sugihara, S. Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment. Journal of Materials Science 36, 4201-4207 (2001). 21. Kim, H. Y. & Yasuda, H. K. Improvement of fatigue properties of poly(methyl methacrylate) bone cement by means of plasma surface treatment of fillers. Journal of Biomedical Materials Research 48, 135-142 (1999). 22. Hegemann, D., Brunner, H. & Oehr, C. Plasma treatment of polymers for surface and adhesion improvement. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 208, 286 (2003). 23. Roth, J. R., Tsai, P. P. & Larry, C. Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure. Patent number: 5403453 U. S. (1995). 24. Aronsson, B. O., Lausmaa, J. & Kasemo, B. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. Journal of Biomedical Materials Research 35, 49-73 (1998). 25. Vleggeert-Lankamp, C. L. et al. Adhesion and proliferation of human Schwann cells on adhesive coatings. Biomaterials 25(14). (2004). 26. Strain, A. J., McGuinness, G., Rubin, J. S. & Aaronson, S. A. Keratinocyte growth factor and fibroblast growth factor action on DNA synthesis in rat and human hepatocytes: modulation by heparin. Exp. Cell Res. 210, 253-259 (1994). 27. Myers, R. L., Chedid, M., Tronick, S. R. & Chiu, I. M. Different fibroblast growth factor 1 (FGF-1) transcripts in neural tissues, glioblastomas and kidney carcinoma cell lines. Oncogene. 11, 785-789 (1995). 28. Zhu, X., Sasse, J., McAllister, D. & Lough, J. Evidence that fibroblast growth factors 1 and 4 participate in regulation of cardiogenesis. Dev. Dyn. 207, 429-438 (1996). 29. Schumacher, B., Pecher, P., von Specht, B. U. & Stegmann, T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97, 645-650 (1998). 30. Cuevas, P. et al. Protection of rat myocardium by mitogenic and non-mitogenic fibroblast growth factor during post-ischemic reperfusion. Growth Factors 15, 29-40 (1997). 31. Bloch, J., Fine, E. G., Bouche, N., Zurn, A. D. & Aebischer, P. Nerve growth factor- and neurotrophin-3-releasing guidance channels promote regeneration of the transected rat dorsal root. Exp Neurol 172, (2001). 32. Chen, H., Ouyang, W., Lawuyi, B., Martoni, C. & Prakash, S. Reaction of chitosan with genipin and its fluorogenic attributes for potential microcapsule membrane characterization. J Biomed. Mater. Res. A 75, 917-927 (2005). 33. Alfred, G. Cold Plasma in Materials Fabrications. IEEE Press, New York 151-153 (1993). 34. Chapman, B. Glow Discharge process-Suputtering and Plasma Ething. John Wiley&Sons (1980). 35. Yuan, Y., Zhang, P., Yang, Y., Wang, X. & Gu, X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials 25(18). (2004). 36. Kim, T. S., Stiehl, J. D., Reeves, C. T., Meyer, R. J. & Mullins, C. B. Cryogenic CO oxidation on TiO(2)-supported gold nanoclusters precovered with atomic oxygen. J Am Chem Soc 125, 2018-2019 (2003). 37. Lin, Y. L., Jen, J. C., Hsu, S. & Chiu, I. M. Sciatic nerve repair by microgrooved nerve conduit made of chitosan-gold nanocomposites. Surgical Neurology Submitted, (2007). 38. Dillon, G. P., Yu, X., Sridharan, A., Ranieri, J. P. & Bellamkonda, R. V. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym Ed 9(10). (1998). 39. 蘇千香 微溝槽聚乳酸導管在周邊神經再生的應Microgrooved polylactide conduits for peripheral nerve regeneration.中興大學化學工程研究所碩士論文 (2006). 40. Chen, H., Ouyang, W., Lawuyi, B., Lim, T. & Prakash, S. A new method for microcapsule characterization: use of fluorogenic genipin to characterize polymeric microcapsule membranes. Appl. Biochem. Biotechnol. 134, 207-222 (2006).

In this study the bridgeable polylactide (PLA) substrate was fabricated with instructive microgrooves first, and then grafted with chitosan-Au nanocomposites (chi-Au) and fibroblast growth factor 1 (FGF1) by atmosphere air plasma treatment to modify the hydrophobic surface. The surface properties of modified substrates were characterized by scanning electron microscope (SEM) and electron spectroscopy for chemical analysis (ESCA). The results showed that the presence of chitosan and chi-Au were demonstrated on PLA surface by SEM and ESCA after atmosphere air plasma treatment. For in vitro studies, the degree of cell alignment and the proliferation of murine neural stem cells were evaluated. It was shown that the cell proliferation was significantly higher on the modified surface and the degree of cell alignment also increased from 84.3% to 89.5% at 72 hours. Furthermore, greater levels of gene expression for BDNF, GDNF and FGF1 and more FGF1 were absorbed on the air plasma modified chi-Au substrate. It is concluded from this study that the use of air plasma was a potential technique for surface modification of biomaterials.
其他識別: U0005-2008200713372700
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.