Please use this identifier to cite or link to this item:
標題: 基因重組蛋白質在氫氧基磷灰石金屬螯合親和層析吸附材的吸附行為
Adsorption behaviors of recombinant proteins on hydroxyapatite-based immobilized metal affinity chromatography adsorbents
作者: 林芃幟
Lin, Peng-Jhih
關鍵字: Hydroxyapatite;氫氧基磷灰石;IMAC;Adsorption isotherm;Protein purification;Model;固定化金屬親和層析;恆溫吸附;蛋白質純化;模式
出版社: 化學工程學系所
引用: 蔡松原 (2004)。基因重組蛋白質在金屬螯和親合曾吸吸附材的吸附行為。碩士論文, 化學工程研究所,中興大學,台中。 林靜宜 (2004)。以氫氧基磷灰石固定化金屬親和吸附材進行蛋白質復性之研究。碩 士論文,化學工程研究所,中興大學,台中。 王振有 (2003)。改善細菌細胞的特質以增進重組蛋白質的產量。碩士論文,化學工 程研究所,逢甲大學,台中。 孫潤柏(2003)。氫氧基磷灰石固定化金屬親和吸附材於蛋白質純化之應用。碩士 論文,化學工程研究所,中興大學,台中。 曾資棟(2003)。差相異構酶包涵體復性最適化研究。碩士論文,化學工程研究所, 中興大學,台中。 邱炫融 (2003)。離子交換薄膜與固定化金屬親和薄膜之批式吸附等溫線與動力學之 研究。碩士論文,化學工程研究所,中興大學,台中。 陳淑芬(2002)。大腸桿菌中表現N-acetyl-D-glucosamine 2-epimerase。碩士論文, 分子生物研究所,中興大學,台中。 王玉玲 (2002)。細菌酯解酵素的生物化學特性。碩士論文,化學工程研究所,逢甲 大學,台中。 田蔚城主編(2001)。生物技術的發展與應用。九州:台北,頁166-191。 李晏忠。(2000)。利用蛋白質之工程技術改造N-acetyl-D-glucosamine 2-epimerase及 N-acetyl-neuraminate aldolase的性質。工業技術研究院委託學術機構研究報告。中興 大學。台中。 高肇鴻。(1998)。Bacillus circulans D-hydantoinase 基因的選殖、表現及酵素特性。碩 士論文。分子生物研究所。中興大學。台中。 Altenbuchner, J., M. Siemann-Herzberg, and C. Syldatk. 2001. Hydantoinasees related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr Opin Biotechnol. 12:559-563. Arey, S.J., Seaman, J.C., Bertsch, P.M. 1999. Immobilization of uranium in contaminated sediments by hydroxyapatite addition. Environ. Sci. Technol.33:337-342 Arnold, F. H. 1991. Metal-affinity separations:a new dimension in protein process. Bio/Technology. 9:150-5. Arvidsson, P., A. E. Ivanov, and I. Y. Galaev .2001. Polymer versus monomer as displacer in immobilized metal affinity chromatography. J Chromatogr B. 753:279-285. Belew, M., and J. Porath .1990. Immobilized metal ion affinity chromatography: effect of solute structure, ligand density and salt concentration on the retention of peptides. J Chromatogr. 516:333-354. Bora, U., Chugh, L., NaHar, P. 2002. Covalent immobilization of proteins onto photoactivated polystyrene microtiter plates for enzyme-linked immunosorbent assay procedures. Journal of Immunological Methods 268:171-177. Betigeri, S.S., Neau, S.H. 2002. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23:3627-3636. Cantor, C. R., and P. R. Schimmerl .1980. Biophysical Chemistry. Part III:The Behavior of Biological Macromoleculars. W.H. Freeman and Company. New York. Chap. 15. Chaga, G. S. 2001. Review:twenty-five years of immobilized metal ion affinity chromatography:past, present and future. J Biochem Biophys Methods. 49:313-334. Chase, H. A. 1984. Prediction of the performance of preparative affinity chromatography. J Chromatogr. 297:179-202. Chen W. Y., W. C. F., Liu C. C. (1996). "Interactions of Imidazole and Protein with Immobilization Cu(II) Ion: Effect of Structure, Salt,Concentration, and pH in Affinity and Binding Capacity." J.Colloid Interface Sci. 180: 135-143. Chen C. Y., W. C. Ciu, J. S. Liu, W. H. Hsu, and W. C. Wang. 2003. Structural basis for catalysis specificity of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase. J Biol Chem. 278(28):26194-26201. Cheon, Y. H., H. S. Kim, K. H. Han, J. Abendroth, K. Niefind, D. Schomburg, and J. Wang. 2002. Crystal structure of D-hydantoinase from Baccilus stearothermophilus: Insight into the stereochemistry of enantioselectivity. Biochemistry. 41:9410-9417. Dosio, F., Arpicco, S., Canevari, S., Figini, M., Gastaldi, D. 1999. Single-step purification of immunotoxins containing a high ionic charge ribosome inactivating protein clavin by carboxymethyl high-performance membrane chromatography.Journal of Chromatography A 830:329-335. Edy, V.G., A. Billiau, and P. De Somer. 1977. Purification of human fibroblast interferon by zinc chelate affinity chromatography. Biol Chem. 252:5934-5935. Eguchi Y., N. Y., Kubota N. (1996). "Recovery of Serum Proteins Using Cellulosic Affinity Membrane Modified by Immobilization of Cu2+ Ion." J. Appl. Polymer Sci. 62: 1153-1160. Freitag R., B. U. N. V. R. O. W. (1994). "Immobilized metal affinity membrane adsorbers as stationary phases for metal interaction protein separation." J.Chromatography. 664: 13-25. Faber, K. 2000. Biotransformations in organic chemistry. 4th ed. New York:Springer. Gerard, M. S. F., Q. M. Mao, and M. T. W. Hearn. 1997. Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilized metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions. J Chromatogr A. 763:71-90. Galland, A.V., Dory, D., Pons, L., Chopin, C., Rabesona, H., Gueant, J.L., Fleurence, J. 1998. Purification of a 41KDa cod-allergenic protein. Journal of Chromatography B 706:63-71. Gonzalez-Stawinski, G.V., Parker, W., Holzknecht, Z.E., Huber, N.S., Platt, J.L. 1999. Partial sequence of human platelet heparitinase and evidence of its ability to polymerize. Biochimica et Biophysica Acta 1429:431-438. Gorbunoff, M.J. 1984a.The interaction of proteins with hydroxyapatite Ⅰ: Role of protein charge and structure.Analytical Biochemistry 136:425-432. Gorbunoff, M.J. 1984b. The interaction of proteins with hydroxyapatite Ⅱ: Role of protein acidic and basic group. Analytical Biochemistry 136:433-439. Gorbunoff, M.J. 1984c. The interaction of proteins with hydroxyapatite Ⅲ: Mehanism. Analytical Biochemistry 136:440-445. Hean T.W. M, J. W. (1996). "Protein Interaction with Immobilization Metal Affinity Ligands under Hight Ionic Strength Condition."Analytical Biochemistry 242: 45-54. Hemdan, E. S., Zhao, Y.-J. Sulkowski, E., Porath, J., (1989). "surface topography of histidine residues a facile probe by immobilized metal ion affinity chromatography." Proc. Natl. Acad. Sci. U.S.A 86: 1811. Harris, E. L. V., and S. Angal. 1989. Protein purification methods. Oxford University. Harwood J.,The versatility of lipase for industrial uses,Trends Biochem.Sci.14(1989)125-126. Itoh, T., B. Milkami, I. Maru, Y. Ohta, W. Hashimoto, and K. Murata 2000. Crystal structure of N-Acyl-D-glucosamine 2-epimerase from porcine kidney at 2.0 Å resolution. J. Mol. Biol. 303:733-744. Itoh, S., Kikuchi, M., Koyama, Y., Takakuda, K., Shinomiy, K., Tantaka, J. 2002. Development of an artificial vertebral body using a novel biomaterals hydroxyapatite/collagen composite. Biomaterials 23:3919-3926. Jaeger K.E.,Reetz M. T.,Microbial Lipaseform versatile tools for biotechnology,Trends Biochem.Biotech.16(1998)169-403 Janson, J. C., and L. Rydén. 1998. Protein Purification:Principle, High-Resolution, Methods, and Applications. 2nd ed. Wiley-VCH. New York. Jiang, W., and M. T. W. Hearn. 1996. Protein interaction with immobilized metal ion affinity ligands under high ionic strength conditions. Anal Biochem.. 242:45-54. Johnson, R. D., and F. H. Arnold. 1995. Review:multipoint binding and heterogeneity in immobilized metal affinity chromatography. Biotechnol Bioeng. 48:437-443. Kim Kyeong Kyu.1997. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an α/βhydrolase with broad substrate specificity. 5:1571–1584 Kay, M.I., Young, R.A., Posner, A.S. 1964. Crystal structure of hydroxyapatite.Nature 204:1050-1052. Kirk,O.,Christensen,M.W.,Beck,F.,Damhus,T., 1995.”Lipase-catalyzed regioselective acylation and deacylation of glucose derivactives”Biocatal.Biotransform.,12:91-97 Kikuchi, H. and M. Watanabe. 1981. Significance of use of amino acids and histamine for the elution of nonhistone proteins in copper-chelate chromatography. Anal Biochem. 115:109-112. Kanda, C., Klar, F., Fitzner, R., Radlanski, R.J., Gross, U. 2002. In vitro investigation of titanium and hydroxyapatite dental implant surface using a rat bone marrow stromal cell culture system. Biomaterials 23:3235-3245. Leyva, A.G., Marrero, J., Smichowski, P., Cicerone, D. 2001. Sorption of antimony onto hydroxyapatite. Environ. Sci. Technol. 35:3669-3675. Liu C.C., W. C. F. C. W. Y. (1996). "Interactions of Imidazole and Proteins With Immobilizaed Cu(II) Ions :Effect of Structure,Salt Concentration,and pH in Affinty and Binding Capacity."J.Colloid Interface Sci. 180: 135-143. Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40:361-1402. Lebreton, J. P. 1977. Purification of the human plasma alpha2-SH glycoprotein by zinc chelate affinity hromatography. FEBS Letters. 80:351-354. Lönnerdal, B., J. Carlsson, and J. Porath. 1977. Isolation of lactoferrin from human milk by metal-chelate affinity chromatography. FEBS Letters. 75:89-92. Mateo, C., G. Fernandez-Lorente, B. C. C. Pessela, A. Vian, A. V. Carrascosa, J. L. Garcia, R. Fernandez-Lafuente, and J. M. Guisan. 2001. Affinity chromatography of polyhistidine tagged enzymes—New dextran-coated immobilized metal ion affinity chromatography metrices for prevention of undesired multipoint adsorptions. J Chromatogr A. 915:97-106. Nordstrom, T., Senkas, A., Eriksson, S., Pontynen, N., Nordstrom, E., Lindqvist, C. 1999. Generation of a new protein purification matrix by loading ceramic hydroxyapatite with metal ions demonstration with poly-histidine tagged green fluorescent protein. Journal of Biotechnology 69:125-133. Nishkawa Y.,Yoshimoto,K.,and Ohawa,M.,1979.,”Chemical and biochemical studies on carbohydrate esters. VII.Plant growth inhibition by an anomeric mixture of synthetic 1-o-laurol-D-glucose”.Chem.Pharm.Bull.,27:2011-2015 Ohkubo, I., T. Kondo, and N. Taniguchi. 1980. Purification of nucleosidediphosphatase of rat liver by metal-chelate affinity chromatography. Biochim Biophys Acta. 616:89-93. Pearson, R. G. 1968. Hard and soft acids and bases, HSAB, part 1. J Chem Educ. 45:581. Porath J. (1992). "Immobilizded metal Ion affinity chromatography."Protein Expression Purif 3: 263-281. Porath, J. 1988. IMAC-immobilized metal ion affinity based chromatography. Trends Anal. Chem. 7(7). 254-9. Porath, J., J. Carlsson, I. Olsson, and G. Belfrage. 1975. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 258:598. Porath J., H. E.S. (1985). "Development of immobilized metal affinity chromatography II. Interaction of amino acids with immobilized nickel iminodiaceta." J.Chromator. A 323: 225-264. Porath, J. and B. Olin. 1983. Immobilized metal ion affinity chromatography, of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry. 22:1621-1630. Purdy, K.J., Embley T.M., Takii S. 1996. Rapid extraction of DNA and rRNA from sediment by a novel hydroxyapatite spin-column method. Applied and Environmental Microbiology 62:3905-3907. QIAexpressionist, T. (1997). "A handbook for high-level expression and purification of 6Xhis-tagged proteins." QIAGEN. QIAGEN. 2003. The QIAexpressionist: Handbook for high-level expression and purification of 6xHis-tagged protein. Queiroz, A.C., Santos, J.D., Monteiro, F.J., Gibson I.R. 2002. Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites. Biomaterials 22:1393-1400. Ryden L., J. J. C. (1985). "Development of Immobilized Metal Affinty Chromatography II Interaction of Amino Acid with Immobilization Nickel Imimodiacetate." J.Chromatography. 323: 255-264. Rijken, D. C., D. Collen. 1981. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem. 256:7035-7041. Rijken, D. C., G. Wijngaards, M. Zaal-DeJong, and J. Welbergen. 1979. Purification and partial characterization of plasminogen activator from human uterine tissue. Biochim Biophys Acta. 580:140-153. Roe, Simon. 2001a. Protein purification applications. New York: OXFORD. Roe, Simon. 2001b. Protein purification techniques. New York: OXFORD. Shimada Y.,Sugihara A.,Tominaga Y.1995,”Enrichment of arachidonic acid :Selective hydrolysis of a single-cell oil from Moruerella with Candida cylindreacea lipase.”JACOS, Sharma, S., and G. P. Agarwal. 2001. Interaction of proteins with immobilized metal ions-role of ionic strength and pH. J. Colloid Interface Sci. 243:61-72. Sharma, S., and G. P. Agarwal. 2001. Interactions of proteins with immobilized metal ions:a comparative analysis using various isotherm models. Anal. Biochem. 288: 126-140. Suen, S.Y. 1997. An isotherm model describing concave-down Scatchard curve for heterogeneous affinity adsorption. J Chem Technol Biotechnol. 70:278-286. Sulkowski, E. 1996. Immobilized metal-ion affinity chromatography:imidazole proton pump and chromatographic sequlae. II. Chromatographic sequelae. J Mol. Recognit. 9: 494-498. Sulkowski, E. 1996. Immobilized metal-ion affinity chromatography:imidazole proton pump and chromatographic sequlae.I. Proton Pump. J Mol Recognit. 9:389-393. Scopes, Bert K., Protein purification: principles and practice. New York:Springer-Verlag. Sulkowski, E. 1985. Purification of proteins by IMAC. Trends Biotechnol. 3:1-7. Tiselius, A., Hjerten, S., Levin, O. 1965. Protein chromatography on calcium phosphate columns. Archives of Biochemistry and Biophysics 65:132-155. Tramper, J. 1996. Chemical versus biochemical conversion:when and how to use biocatalysts. Biotechnol. Bioeng. 52:290-5. Todd, R. J., R. D. Johnson, and F. H. Arnold. 1994. Multiple-site binding interactions in metal-affinity chromatography I. Equilibrium binding of engineered histidine-containing cytochromes c. J. Chromatogr. A. 662:13-26. Tokuyama, S. 2001. Discovery and application of a new enzyme:N-acylamino acid racemase. J. Mol. Cat. B Enzymatic. 12:3-14. Ueda, E. K. M., P. W. Gout, and L. Morganti. 2003. Review:Current and prospective applications of metal ion-protein binding. J. Chromatogr A. 988:1-23. Vega, E.D., Pedregosa, J.C., Narda, G.E. 1999. Interaction of oxovanadium(Ⅳ) with crystalline calcium hydroxyapatite: surface mechanism with no structural modification. Journal of Physics and Phemistry of Solids 60:759-766. Wang, W. C., W. C. Chiu, S. K. Hsu, C. L. Wu, C. Y. Chen, J. S. Liu, and W. H. Hsu. 2004. Structure basis for catalytic racemization and substrate specificity of an N-Acylamino acid racemase homologue from Deinococcus radioduran., J. Mol. Biol. 342(1):155-169. Wu, C.-F., Chen, W. Y., Liu, H. S., (1995). "Determination of the Binding Constant of Imidazole and Histidine with Immobilized Cu(Ⅱ) by Differential UV spectroscopy." J. Chin. I.Ch. E. 26: 81. Wassel, D.T.H., Hall, R. C., Embery, Graham. 1995. Adsorption of bovine serum albumin onto hydroxyapatite. Biomaterials 16:697-702. Wirth, H. J., K. K. Unger, and M. T. W. Hearn. 1993. Influence of ligand density on the properties of metal-chelate affinity supports. Anal Biochem. 208:16-25. Wu, C. Y., S. Y. Suen, S. C. Chen, and J. H. Tzeng. 2003. Analysis of protein adsorption on regenerated cellulose-based immobilized copper ion affinity membranes. J. Chromatogr. A. 996:53-70. Xu, Yuping., Schwartz, F.W. 1994. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ. Sci. Technol. 28:1472-1480. Zachariou, M., and M. T. Hearn. 2000. Adsorption and selectivity characteristics of several human serum proteins with immobilized hard Lewis metal ion-chelate adsorbents. J. Chromatogr. A. 890:95-116. Zaveckas, M., B. Baskeviciute, V. Luksa, G. Zvirblis, V. Chmieliauskaite, V. Bumelis, and H. Pesliakas. 2000. Comparative studies of recombinant human granulocyte-colony stimulating factor, its Ser-17 and (His)6-tagged forms interaction with metal ions by means of immobilized metal ion affinity partitioning. Effect of chelated nickel and mercuric ions on extraction and refolding of proteins from inclusion bodies. J. Chromatogr. A. 904: 145-169. Zhou, H. M., Xie, Q.(2004) Refolding intermediate og guanidine hydrochloride denatured aminoacylase. The International Journal of Biochemistry & Cell Biology 36:1332-1340.
本研究應用氫氧基磷灰石(Hydroxyapatite)為固定化金屬離子親和吸附材,並以Fe3+為配位金屬離子。並將具有聚組織胺標籤的基因重組蛋白質可經由固定化金屬親和層析技術完成純化的目的,再深入地了解蛋白質間與固定化金屬的各種相互關係的應用。本研究探討原始狀態(native conditions)及變性狀態(denaturing conditions)之蛋白質在氫氧基磷灰石膠體的吸附行為,分別利用具有不同聚組織胺標籤數目與分子量大小的五個標的蛋白質(esterase、epimerase、D-hydantoinase、N-carbamoylase和racemase)。再利用四個恆溫吸附模式進行分析實驗數據,即Langmuir模式、Langmuir-Freundlich模式、Temkin模式和Scatchard模式,計算吸附係數qm、Kd與n值。實驗證明,蛋白質大小及聚組織胺標籤數目,都是影響蛋白質吸附量的重要因素。由實驗的數據結果得到分子量越大,其qm吸附量越少;聚組織胺標籤數目越多,其kd值越小,表示親和性越大。從恆溫吸附模式可以幫助說明吸附的程度與協同關係之吸附行為,並且可以作為設計放大固定化金屬親和層析技術製程的重要指標。

The effects of molecular weight and number of poly(His)-tags on the adsorption of recombinant proteins on a hydroxyapatite-based immobilized metal affinity adsorbent were investigated in this study. Under native conditions, the adsorption isotherms were well-fitted by the Langmuir-Freundlich isotherm model. The maximum adsorption capacity was found to decrease with the increase in molecular weight. The binding affinity increased significantly with the number of poly(His)-tags. The adsorption capacities for esterase and epimerase were exceptionally high due to probably multilayer adsorption. Under denaturing condition, both the Langmuir and the Langmuir-Freundlich isotherm models were found to well-fitted the adsorption behavior of all five proteins studied. Under denaturing conditions, the binding affinities for all five proteins studied were essential identical and were much lower than that under native conditions, indicating that the Fe(III)-charged hydroxyapatite may not be appropriate for protein purification.
其他識別: U0005-2508200711011000
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.