Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3646
標題: 幾丁聚醣奈米金及奈米銀複合材料之物理性質與生物相容性
Physical characteristics and biocompatibility of chitosan-gold and chitosan-silver nanocomposites
作者: 張昱彬
Chang, Yu-Bin
關鍵字: chitosan;幾丁聚醣;gold nanoparticles;silver nanoparticles;fibroblasts;奈米金;奈米銀;纖維母細胞
出版社: 化學工程學系所
引用: 1. 孫啟璟、臺大皮膚科部等人,實用皮膚醫學,臺北:國立台灣大 學醫學院,民92。 2. 范如霖,臨床皮膚科學,臺北:合記圖書出版社,民61。 3. 范如霖,范文峰,曹光磊,皮膚組織病理學,臺北:合記圖書出版社,民61。 4. Mast BA, Diegelmann RF, Krummel TM, Cohen IK. Scarless wound healing in the mammalian fetus. Surg Gynecol obstet 1992; 174: 441-51. 5. 李宣書,淺談組織工程,物理雙月刊(廿四卷三期)2001年6月。 6. 曹誼林,劉偉,崔磊,組織工程學理論與實踐,上海:上海科學技術出版社,民93 7. 楊志明,徐善慧,組織工程,台北:九州圖書文物有限公司,民94。 8. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology 1998; 16: 224-230. 9. Achterberg V. Cytotoxicity of wound dressing materials assessed using cultured skin equivalents. Burns. 1996; 22: 424. 10. Sahlin H, Nygren H. Cytotoxicity testing of wound-dressing materials. Altern Lab Anim. 2001; 29: 269-275. 11. Quinn KJ, Courtheny JM, Gaylor JDS, Reid WH. Principles of burn dressings. Biomaterials 1985; 6: 369-377. 12. Park GB. Burn wound coverings: A review. Biomaterials Medical Devices & Artifical Organs. 1978; 6: 1-35. 13. Eloy R, Brack A, Dorme N, Cornillac AM, Physical and biological properties of a new synthetic amino acid copolymer used as wound dressing. J Biomed Mater Res. 1992; 26: 695-712. 14. Tavis MJ, Harney JH, Thornton JW, Bartlett RH. Modified collagen membrane as a skin substitute: Preliminary studies. J Biomed Mater Res. 1975; 9: 285-301. 15. Walker D. Back to basics: Choosing the correct wound dressing. American J Nursing 1996; 96: 35-39. 16. Lishan W, Eugene k, Aillen W, Lee YL Chitosan-Alginate PEC membrane as a wound dressing: Assessment of Incisional Wound Healing. J Biomed Mater Res. 2002; 63: 610-618. 17. Yannas IV, Burke JF, Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980; 14: 65-81. 18. Dagalakis N, Flink J, Stasikelis P, Burke JF,Yannas IV, Design of an artifical skin.Ⅲ. Control of pore structure. J Biomed Mater Res. 1980; 14: 511-528. 19. Matsuda K, Suzuki S, Isshiki N, Yoshioka K, Wada R, Hyon SH, Ikada Y. Evaluation of a bilayer artificial skin capable of sustained release of an antibiotoc. Biomaterials 1992; 13: 119-122. 20. Matssada K, Suzuki S, Isshiki N, Ikada Y. Re-freeze dried bilayer artificial skin. Biomaterials 1993; 14: 1030-1035. 21. Hinrichs LJ, Lommen EJ, Wildevuur CRH, Feijen J. Fabrication and characterization of an asymmetric polyurethane membrane for use as a wound dressing. J Appl Biomater. 1992; 3: 287-303. 22. Chvapil M. Consideration on manufacturing principles of a synthetic burn dressing:Areview. J Biomed Mater Res. 1982; 16: 245-263. 23. Ehleben CM, May SR, Still JM Jr. Pain associated with an adherent polyurethanewound dressing. Burns. 1985; 12: 122-126. 24. Suzuki Y, Tanihara M, Nishimura Y, Suzuki K, Kakimaru Y, Shimizu Y. A novel wound dressing with an antibiotic delivery systemstimulated bymicrobial infection. ASAIO J. 1997; 43: 854-857. 25. Harriger MD, Supp AP, Warden GD, Boyce ST. Glutaraldehyde crosslinking of collagen substrates inhibits degradation in skin substitutes grafted to athymic mice. J Biomed Mater Res. 1997; 35: 137-145. 26. Cooper ML, Hanbrough JF. Use of a composite skin graft composed of cultured human keratinocytes and fibroblasts and a collagen-GAG matrix to cover full-thickness wounds on athymic mice. Surgery 1991; 109: 198-207. 27. Geesin JC, Brown LJ, Liu Z, Berg RA. Development of skin model based on insoluble fibrillar collagen. J Biomed Materials Res. 1996; 33: 1-8. 28. Yang JY. Clinical application of collagen sheet, YCWM, as a burn wound dressing. Burns. 1990; 16: 457-461. 29. Chvapil M. Collagen sponge: Theory and practice of medical applications. J Biomed Mater Res. 1977; 11: 721-741. 30. Sall KN, Kreter JK, Keates RH, The effect of chitosan on corneal wound healing. Ann Ophthalmol. 1987; 19: 31-33. 31. Shigemasa Y, Minami S. Applications of chitin and chitosan for biomaterials. Biotech & Genetic Eng Rev. 1996; 13: 383-420. 32. Berscht PC, Nied B. Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics. Biomaterials. 1994; 15: 593-600. 33. Neumann PM, Zur B, Ehrenreich Y, Gelatin-Based sprayable foam as a skin 103 substitute. J Biomed Mater Res.1981; 15: 9-18. 34. Shinde BG, Nithianandam VS, Kaleem K, Erhan S. Flexibilized gelatin film-based artificial skin model I. Preparation and properties of the films. Bio-Med Mater and Eng. 1992; 2: 123-126. 35. Shinde BG, Erhan S. Flexibilized gelatin film-based artificial skin model II. Release kinetic of incorporated bioactive molecules. Bio-Med Mater and Eeng. 1992; 2: 127-131. 36. Park MS, Kim YB. Sustained release of antibiotic from a fibrin-gelatin-antibiotic mixture. Laryngoscope 1997; 107: 1378-1381. 37. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS, Study on gelatin-containing artifical skin I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials 1999; 20; 409-417. 38. Takahashi H, Miyoshi T, Boki K, Study on hydrophilic properties of gelatin I. Hydrophilic properties of gelatin as a wound dressing. Tokushima J Exper Med. 1993; 40: 159-167. 39. Takahashi H, Miyoshi T, Boki K. Study on hydrophilic properties of gelatin II. Water-absorbing property and hemostatic effect of gelatin. Tokushima J Expe Med, 40, 169-175, 1993. 40. Babu PR, Sastry TP, Rose C, Rao NM. Hydrogels based on gelatin 104 poly (hydroxyethyl methacrylate) and poly (butyl acrylate) graft copolymer impregnated with fibrin. J Applied Polymer Science 1997; 65: 555-560. 41. Nishimura K, Kitamura H, Naito M, Yamaoka A, Yoshikawa E, Makita T. Cementum-impregnated gelatin membrane: Its effect on periodontal tissue regeneration. J Biomed Mater Res. 1995; 29: 227-232. 42. Chanda J, Rao SB, Mohanty M, Muraleedharan CV, Arthur VL, Bhuvaneshwar GS, Valiathan MS. Use of glutaraldehyde-gentamicin-tread bovine pericardium as a wound dressing. Biomaterials. 1994; 15: 68-70. 43. Gump FE, Kinney JM. Caloric and fluid losses through the burn wound. Surg clinics of North America. 1970; 50: 1235. 44. Lehmann R. Collagen: A multifunctional family of proteins. Dtsch Z Mund Kiefer Gesichtschir. 1987; 11: 374-376. 45. Lindblad WJ, Kormos KI. Collagen: A multifunctional family of proteins. J Reconstr Microsurg. 1991; 7: 37-43. 46. Hay ED. Cell Biology of extracellular matrix. New York: Plenum press. 1991; 105: 419-462. 47. Bell ED, Ivarsson B, Cmerrill. Production of tissue-like structure by constraction of collagen lattices by human fibroblast of different proliferative potential in vitro. Proc Natl Acad Sci. 1979; 76 1274-1278. 48. Herzhoff K. Fibroblast expression of collagen integrin rexceptors alpha 1 beta 1 and alpha 2 beta 1 is not changed in systemic scleroderma. Br J Dermatol 1999; 141: 218-223. 49. Chen M. alpha 2 beta 1 integrin mediates dermal fibroblast attachment to type VII collagen via a 158-amino-acid segment of the NCI domain. Exp Cell Res. 1999; 249: 231-239. 50. Tomasek JJ, Akiyama SK. Fibroblast-mediated collagen gel contraction does not require fibronectin alpha 5 beta 1 integrin interaction. Anat Rec. 1992; 234: 153-160. 51. Chin GS. Discoidin domain receptors and their ligand, collagen, are temporally regulated in fetal rat fibroblast in vitro. Plast Reconstr Surg. 2001; 107: 769-776. 52. Mohan RR, Wilson SE. Discoidin domain receptors (DDR) 1 and 2: collagen-activated tyrosine kinase receptors in cornea. Exp Eye Res. 2001; 72: 87-92. 53. Vogel W. The discoidin domain receptors tyrosine kinase are activated by collagen. Mol Cell, 1, 13-23, 1997. 54. Docherty R. Glycosaminoglycansfacilitate the movement of fibroblast through three-dimensional collagen matrices. J Cell Sci. 1992; 92: 263-270. 55. Dean JW, 3rd B Karshen, P Briggett. Lectins inhibit periodontal ligment fibroblast attachment, spreading and migration on laminin substrates. J Biomed Mater Res. 1999; 22: 939-957. 56. Schor SL. Substratum-dependent stimulation of fibroblast migration by the gelatin-binding domain of fibronectin. J Cell Sci. 1996; 109: 2581-2590. 57. Boyce ST, Christianson DJ, Hansbrough JF, Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes. J Biomed Mater Res. 1988; 22: 939-957. 58. Lam PK, ES Chen. Integra and cultured epithelium. J Burn Care Rehabi. 2001; 22: 197-198. 59. Pandya AN, B Woodward, N Parkhouse. The use of cultured autologous keratinocytes with integra in the resurfacting of actute burns. Plast Reconstr Surg. 1998; 102: 825-830. 60. Trent JF, Kirsner RS. Tissue engineered skin:Apligraf, a bi-layered living skin equivalent. Int J Clin Pract. 1998; 52: 408-413. 61. Eaglstein WH, Falanga V. Tissue engineering and the development of Apigraf, a human skin equivalent. Cutis. 1998; 62: 1-8. 62. Suzuki S, Mastuda K, Isshiki N, Tamada Y, Ikada Y. Experimental study of a newly developed bilayer artificial skin. Biomaterials 1990; 11: 356-360. 63. Suzuki S, Mastuda K, Isshiki N, Tamada Y, Yoshioka K, Ikada Y. Clinical evaluation of a new bilayer artificial skin composed of collagen sponge and silicone layer. Br J Plast Surg. 1990; 43: 47-54. 64. Brine CJ, Sandford PA, Zikakis JP, Advances in Chitin and Chitosan. London and NewYork Elsevier 1992; 9-15. 65. Rhoades J, Roller S. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Enviro 110 Microbio. 2000; 66: 80-86. 66. Kuen YL, Wan SH, Won HP. Blood compatibility and biodegradability of partially N-acetylated chitosan derivatives. Biomaterials 1995; 16: 1211-1216. 67. Claire C, Odile D, Alain D. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 2001; 22: 261-268. 68. Kratz G, Arnander C, Swedenborg J, Back M, Falk C, Gouda I, Larm O. Heparin-chitosan complexes stimulate wound healing in human skin. Scand J Plast Reconstr Surg Hand Surg. 1997; 31: 119-123. 69. Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY ,Huang RN, Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 2001; 22: 165-173. 70. Miyazaki S, Ishii k, Nadai T. The use chitin and chitosan as drug carriers. Chem Pharm Bull. 1981; 29: 3067-3069. 71. Aiedeh K, Gianasi E, Orienti I, Zecchi V. Chitosan microcapsules as controlled release system for insulin. J Microencapsul 1997; 14: 567-576. 72. Giunchedi P, Genta I, Conti B, Muzzareli R. Preparation and chrarcterization of ampicillin loaded methylpyrrolidinone chitoasn and chitosan microspheres. Biomaterials 1998; 19: 157-161. 73. Muzzareli R, Biagini G, Pugnaloni A, Filippini O, Baldassarre V, Castaldini 111 C,Rizzoli C. Reconstruction of periodontal tissue with chitosan. Biomaterials 1989; 10: 598-603. 74. Muzzareli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, Vasi V. Biological activity of chitosan: ultrastructural study. Biomaterials 1998; 9: 247-252. 75. Sundararajan VM, Howard WTM. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999; 20: 1133-1142. 76. Roller S, Covill N. The antifingal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol. 1999; 47: 67-77. 77. Esumi K, Takei N, Yoshimura T. Antioxidant-poentiality of gold-chitosan nanocomposities. Colloids and surfaces B: Biointerfaces 2003; 32: 117-123. 78. Esumi K, Houdatsu H, Yoshimura T. Antioxidant action by gold-PAMAM dendrimer nanocomposites. Langmuir 2004; 20: 2536-2538. 79. Hsu SH, Chou CW, Tseng SM. Ehanced thermal and mechanical properties Polyurethane/Au nanocomposite. Macromol.Mater and Eng. 2004; 289: 1096-1101. 80. Hsu SH, Chou CW. Enhanced biostability of polyurethane containing gold nanoparticles. Polymer degra and stab. 2004; 85: 675-680. 81. Hsu SH, Tang CM, Tseng HJ. Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res A. 2006; 79: 759-770. 82. Cho KH, Park JE, Osaka T, Park SG, The study of antimicrobial 112 113 activity and preservative effects of nanosilver ingredient. Electroxhimica Acta. 2005; 51: 956-960. 83. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004; 275: 177-182. 84. Alt V, Bechert T, Steinruke P, Wagener M, Seidel P, Dingeldein E, Schnettler R. An vitro assessment of the antibacterial properties and cytotoxity of nanoparticulate silver bone cement. Biomaterials. 2004; 25: 4383-4391. 85. Chou CW, Hsu SH, Chang H, Tseng SM, Lin HR. Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles Polymer Degradation and Stability 2006; 91: 1017-1024. 86. Dalby MJ, Yarwood SJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS. Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res. 2002; 276: 1-9. 87. Dalby MJ, Giannaras D, Riehle MO, Gadegaard N, Affrossman S, Curtis AS. Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials 2004; 25: 77-83. 88. 陳永琇. 幾丁聚醣及奈米複合材料於皮膚修復之應用. 中興大學碩士論文. 民95. 89. Dillon GP, Yu X, Sridharan A, Ranieri JP, Bellamkonda RV. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym Ed. 1998; 9: 1049-1069. 90. 呂晃志,蔡宜壽,銀系無機抗菌材料的開發(下),化工資訊與商情(Chemical Monthly NO. 45),2007年3月。 91. 牟中原,陳家俊,奈米材料研究展望,尖端材料台灣學術網:http://tol.iams.sinica.edu.tw/tamol/6/work/mo.htm 92. 盧崑宗,張立瑜,聚葡萄胺糖預處理對木材塗裝性能之改善(I)聚葡萄胺糖之製造與基本性質,中華林學季刊,2004年,37: 89-99. 93. Kawade J, Yui T, Okuyama K, Ogawa K. Crystalline behavior of chitosan organic acid salts. Bioscience, Biotechnology and Biochemistry 2001; 65: 2542-2547.
摘要: 
本研究在幾丁聚醣的基材中加入約5 nm尺寸的奈米金或奈米銀製作幾丁聚醣奈米複合材料,並植覆人類牙齦纖維母細胞(human gingival fibroblasts, hGF),結果發現hGF在幾丁聚醣-奈米金或奈米銀複合材料上都有較好的生長情形。並且利用金黃色葡萄球菌(Staphylococcus aureus)做材料抗菌試驗可發現,幾丁聚醣奈米銀複合材料有較佳的抗菌效果。材料的性質分析方面,由原子力顯微鏡(atomic force microscope, AFM)觀察材料表面相圖(phase)可發現,幾丁聚醣-奈米金或奈米銀複合材料的晶相在添加60 ppm的銀或120 ppm的金有變大趨勢,此時由動態機械分析儀(dynamic mechanic analyzer, DMA)測試材料的機械性質,可知幾丁聚醣-奈米金在60 ppm及幾丁聚醣-奈米銀在120 ppm有良好儲存模數(storage modulus),玻璃轉移溫度(glass transition temperature, Tg)亦有相同趨勢,再由穿透式電子顯微鏡(Transmission electron microscopy, TEM)可觀察到奈米粒子在高濃度下有聚集的現象,可能因此而破壞材料的結晶性,導致物理性質下降。材料抗自由基與親水性測試均顯示含奈米金或奈米銀的複合材料較純幾丁聚醣為佳。

Chitosan nanocomposites were prepared by addition of 5 nm gold nanoparticles or silver nanoparticles in the chitosan-Au and chitosan-Ag matrix. The growth of human gingival fibroblasts on chitosan nanocomposites was enhanced. Chitosan-silver nanocomposites had the better antibacterial effect for Staphylococcus aureus. Results from Atomic force microscope showed that the surface crystalline domains of chitosan-Au or chitosan-Ag nanocomposites appeared larger at 60 or 120 ppm. At this time the mechanical properties and the glass transition temperature of the nanocomposites measured by the dynamic mechanic analyzer showed that chitosan-Au at 60 ppm and chitosan-Ag nanocomposites at 120 ppm were better. Transmission electron microscopy showed that aggregation of the nanoparticles at high concentrations may have destroyed the crystalline domains and reduced the physical properties. The free scavenging ability and hydrophilicity of the nanocomposites were better than those of the pure chitosan.
URI: http://hdl.handle.net/11455/3646
其他識別: U0005-2508200717491900
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.