Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3647
標題: 製備PMMA/蒙脫土複合薄膜與性質探討
Preparation and Properties of PMMA/ Montmorillonite Composite Membranes
作者: 陳邦碩
Chen, Bang-Shuo
關鍵字: PMMA;蒙脫土;montmorillonite;VIPS;NIPS;adsorption;desorption;蒸氣誘導式相轉換法;非溶劑誘導式相轉換法;吸附;脫附
出版社: 化學工程學系所
引用: Reference [1] S.-W. Chuang, Steve L.-C. Hsu, C.-L. Hsu, “Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications,” Journal of Power Sources, 168 (2007), 172–177 [2] Y.-L. Lu, Z. Li, Z. Zhen Yu, M. Tian, L.-Q. Zhang, Y.-W. Mai, “Microstructure and Properties of Highly Filled Rubber/Clay Nanocomposites Prepared by Melt Blending,” Composites Science and Technology, 2007, DOI: 10.1016/j.compscitech.2007.05.018 [3] S. G. Adoor, M Sairam, L.S. Manjeshwar, K.V.S.N. Raju, T.M. Aminabhavi, “Sodium montmorillonite clay loaded novel mixed matrix membranes of poly(vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1,4-dioxane,” Journal of Membrane Science, 285, 2006, 182-195 [4] Y.-J. Fu, C.-C. Hu, K.-R. Lee,Y.-J. Chen, J.-Y. Lai, “Zeolite-filled PMMA composite membranes: influence of surfactant addition on gas separation properties,” Desalination, 200, 2006, 250-252 [5] Y.-C. Wang, S.-C. Fan, K.-R. Lee, C.-L. Li, S.-H. Huang, H.-A. Tsai, J.-Y. Lai, “Polyamide/SDS–clay hybrid nanocomposite membrane application to water–ethanol mixture pervaporation separation,” Journal of Membrane Science, 239, 2004, 219–226 [6] J.P.G. Villaluenga, M. Khayet, M.A. Lo’pez-Manchado, J.L. Valentin, B. Seoane, J.I. Mengual, “Gas transport properties of polypropylene/clay composite membranes,” European Polymer Journal, 43, 2007, 1132–1143. [7] L. Aouinti, M. Belbachir, “A maghnite-clay-H/ polymer membrane for separation of ethanol–water azeotrope,” Applied Clay Science, 2007, DOI: 10.1016/j.clay.2007.04.014 [8] G. Zhang, Z. Zhou, “Organic/inorganic composite membranes for application in DMFC,” Journal of Membrane Science, 261, 2005, 107–113 [9] M. Luisa Di Vona , Zakarya Ahmed, Serafina Bellitto, Alessandro Lenci, Enrico Traversa, Silvia Licoccia, “SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process,” Journal of Membrane Science, 296, 2007, 156–161 [10] Wua, C. Wua, F. Yub, T. Xua and Y. Fu, “Free-standing anion-exchange PEO-SiO2 hybrid membranes,” Journal of Membrane Science, 2007, DOI: 10.1016/j.memsci.2007.07.043 [11] H.-C. Chiu, J.-J. Huang, C.-H. Liu, S.-Y. Suen, “Batch adsorption performance of methyl methacrylate/styrene copolymer membranes.” Reactive & Functional Polymers, 66, 2006, 1515–1524 [12] G. J. Hwang, H. Ohya, T. Nagai, “Ion exchange membrane based on block copolymers. Part Ⅲ: Preparation of cation exchange membrane”, Journal of Membrane Science, 156, 1999, 61-65 [13] H.C. Park, Y.P. Kim, H.Y. Kim, Y.S. Kang, “Membrane formation by water vapor induced phase inversion,” Journal of Membrane Science, 156, 1999, 169-178 [14] M-J. Han, D. Bhattacharyya, “Changes in morphology and transport characteristics of polysulfone membranes prepared by different demixing conditions,” Journal of Membrane Science, 98, 1995, 191-200 [15] T.-H. Young, L.-P. Cheng, W.-M. You, L.-Y. Chen, “Prediction of EVAL membrane morphologies using the phase diagram of water -DMSO-EVAL at different temperature,” Polymer, 40, 1999, 2189-2195 [16] I. F. Wang, “Highly asymmetric polyethersulfone filtration membranes,” US Patent 5 869 174, 1999 [17] D.-M. Wang, T.-T. Wu, F.-C. Lin, J.-Y. Hou, J.-Y. Lai, “A novel, method for controlling the surface morphology of polymeric membranes,” Journal of Membrane Science, 169, 2000, 39-51 [18] M. J. Han, P. M. Bummer, M. Jay, D. Bhattacharyya, “Phase transition of polysulfone solution during coagulation,” Polymer, 24, 1995, 4711-4714 [19] Bert Muller, Marco Riedel, Roger Michel, Susan M.De Paul, Rolf Hofer, Dietmar Heger, Detlev Grutzmacher, “Impact of nanometer-scale roughness on contact angle hysteresis and globulin adsorption,” Journal of Vacuum Science & Technology, 19, 2001, 1715-1720. [20] 江珮禎, 以玻璃纖維為基材之C18疏水薄膜其介電性質與吸附應用之研究, 國立中興大學化學工程研究所, 碩士論文, 台中, 台灣, 2004. [21] L.-H. Zhu, X.-G. Ren and S.-B. Yu, “Use of Cetyltrimethylammonium Bromide-Bentonite To Remove Organic Contaminants of Varying Polar Character from Water,” Environmental Science & Technology, 32, 1998, 3374-3378 [22] Lange, norbet Adolph, Lange’s handbook of chemistry, Speight, J. G, 2005 [23] N. Li, H.-K. Lee, “Trace Enrichment of Phenolic Compounds from Aqueous Samples by Dynamic Ion-Exchange Solid-Phase Extraction,” Analytical Chemistry, 69, 1997, 5193-5199
摘要: 
本實驗是經由兩種相轉移法-乾式相轉移和乾濕式相轉移法製備PMMA/蒙脫土 (montmorillonite,MMT) 之複合薄膜,希望能製備出帶有離子交換以及擁有吸附能力的薄膜。以ATR-FTIR分析高分子之組成;並以TGA觀察薄膜裡的蒙脫土是否有損失。本研究並以SEM觀察薄膜的接觸空氣面、接觸玻璃面以及截面是否為多孔性薄膜;接觸角分析儀以及含水率測量高分子薄膜之親疏水性。
在PMMA/Na+-MMT複合薄膜離子交換容量的部份,當Na+-MMT/PMMA重量比值增加時,薄膜的離子交換容量增加。而PMMA/2M2HT MMT複合薄膜則是有測出一些離子交換容量。
在PMMA/2M2HT MMT複合薄膜酚化合物之批式吸附部份,當2M2HT MMT/ PMMA重量比值增加時,薄膜對酚化合物之吸附量增加,這是因為由2M2HT MMT所製備出來的薄膜是疏水性的,薄膜與酚化合物之間會產生疏水作用力。而且薄膜對p-nitrophenol之吸附量大於對酚之吸附量,可能是因為p-nitrophenol比較疏水的關係。另外,經由乾式相轉移法製備出來的薄膜對酚化合物的吸附效果會比由乾濕式製備出來的薄膜來的好。在脫附的部份,薄膜的脫附率都可以達到70%以上,而且以99.9 wt%甲醇溶液當做脫附劑的脫附效果比50 wt%乙醇水溶液脫附效果還要好。

In this study, poly(methyl methacrylate) (PMMA)/ montmorillonite composite membranes were prepared via two phase inversion methods - vapor induced phase separation (VIPS) and nonsolvent induced phase separation (NIPS). The resulted membranes with different feed MMT/PMMA (M/P) weight ratios were characterized by ATR-FTIR, TGA, SEM, contact angle, OM, and water content. The ATR-FTIR spectra revealed the successful introduction of characteristic Si-O-Si group of MMT in the composite membranes. The experimental M/P weight ratios analyzed by TGA were in close agreement with the feed M/P ratios. But in the TGA results of PMMA/Na+-MMT composite membranes, the membrane which was fabricated in NIPS lost so much Na+-MMT. Moreover, the contact angle and water content results for the PMMA/2M2HT MMT composite membranes show that they were more hydrophobic than the PMMA membranes. The contact angle and water content results for the PMMA/Na+-MMT composite membrane were showed that they were more hydrophilic than the PMMA membranes without Na+-MMT. In ion exchange capacity experiment, the ion exchange capacity was increased with increasing Na+-MMT/PMMA weight ratio. PMMA/2M2HT MMT composite membranes had a bit ion-exchange capacity. For batch adsorption of phenol compounds, the composite membranes exhibited higher adsorption capacities than the PMMA membrane, which should result from the introduction of 2M2HT MMT. The adsorbed amount of phenol compounds increased with increasing M/P ratio in membrane. In addition, the adsorption performance for the PMMA/2M2HT MMT composite membranes prepared from VIPS was better than those prepared from NIPS. In the batch desorption process, the desorption percentage was above 80% by using 99.9 wt% methanol, and above 70% by using 50 wt% ethanol.
URI: http://hdl.handle.net/11455/3647
其他識別: U0005-2508200717582300
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.