Please use this identifier to cite or link to this item:
標題: 以銅為基礎觸媒擔持於奈米碳管之製備及其應用於甲醇蒸汽重組反應之研究
Preparation of Copper Based Catalyst Supported on Carbon Nanotubes for Steam Reforming of Methanol
作者: 廖秉恒
Liao, Ping-Heng
關鍵字: carbon nano-tubes;奈米碳管奈;nano-catalyst;Ni-Cu alloys;chemical reduction method;methanol steam reforming;米觸媒Cu-Ni合金;化學還原法;蒸汽重組反應
出版社: 化學工程學系所
引用: [1]. S. Iijima, "Helical microtubules of graphitic carbon", Nature 354 (1991) 56-58 [2]. S. Iijima, T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter", Nature 363 (1993) 603-605 [3]. D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls", Nature 363 (1993) 605-607 [4]. M. S. Dresselhaus, G. Dresselhaus, R. Saito, "Physics of carbon nanotubes", Carbon 33 (1995) 883-891 [5]. R. S. Ruoff, D. C. Lorents, "Mechanical and thermal properties of carbon nanotubes", Carbon 33 (1995) 925-930 [6]. V. N. Popov, "Carbon nanotubes: properties and application", Materials Science and Engineering: R: Reports 43 (2004) 61-102 [7]. C. H. Li, K. F. Yao, J. Liang, "Influence of acid treatments on the activity of carbon nanotube-supported catalysts", Carbon 41 (2003) 858-860 [8]. K. Esumi, I. Ishigami, A. Nakajima, K. Sawada, H. Honda, "Chemical treatment of carbon nanotubes", Carbon 34 (1996) 279-281 [9]. M. S. P. Shaffer, X. Fan, A. H. Windle, "Dispersion and packing of carbon nanotubes", Carbon 36 (1998) 1603-1612 [10]. P. Serp, M. Corrias, P. Kalck, "Carbon nanotubes and nanofibers in catalysis", Applied Catalysis A: General 253 (2003) 337-358 [11]. Q. C. Xu, J. D. Lin, J. Li, X. Z. Fu, Z. W. Yang, W. M. Guo, D. W. Liao, "Combination and interaction of ammonia synthesis ruthenium catalysts", Journal of Molecular Catalysis A: Chemical 259 (2006) 218-222 [12]. G. M. Spinks, S. R. Shin, G. G. Wallace, P. G. Whitten, S. I. Kim, S. J. Kim, "Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion", Sensors and Actuators B: Chemical 115 (2006) 678-684 [13]. M. K. van der Lee, A. Jos van Dillen, J. H. Bitter, K. P. de Jong, "Deposition precipitation of carbon nanofiber supported Nickel catalysts", Journal of American chemical society 127 (2005) 13573-13582 [14]. L. Li, B. Q. Xu, J. L. Li, Z. Q. Mao, "Studies on PEMFC electrocatalysts: physicochemical characterization of homemade Pt/C electrocatalyst", Acta Physiologica 19 (2003) 342-346 [15]. L. M. Ang, T. S. A. Hor, G. Q. Xu, C. H. Tung, S. P. Zhao, J. L. S. Wang, "Decoration of activated carbon nanotubes with copper and nickel", Carbon 38 (2000) 363-375 [16]. G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, W. Z. Li, "Lithium insertion into CuO/carbon nanotubes", Journal of Power Sources 75 (1998) 175-179 [17]. X. Ma, X. Li, N. Lun, S. Wen, "Synthesis of gold nano-catalysts supported on carbon nanotubes by using electroless plating technique", Materials Chemistry and Physics 97 (2006) 351-356 [18]. H. Liu, G. Cheng, R. Zheng, Y. Zhao, C. Liang, "Influence of acid treatments of carbon nanotube precursors on Ni/CNT in the synthesis of carbon nanotubes", Journal of Molecular Catalysis A: Chemical 230 (2005) 17-22 [19]. M. C. Tsai, T. K. Yeh, C. H. Tsai, "An improved electrodeposition technique for preparing platinum and platinum ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation", Electrochemistry Communications 8 (2006) 1445-1452 20]. M. Wang, K. D. Woo, D. K. Kim, "Preparation of Pt nanoparticles on carbon nanotubes by hydrothermal method", Energy Conversion and Management 47 (2006) 3235-3240 [21]. V. Y. Lordi, N.; Wei, J., "Method for Supporting Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst", Chemistry of Materials 13 (2001) 733-737 [22]. W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, "Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell", Carbon 40 (2002) 791-794 [23]. X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, "Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell", Journal of Power Sources 158 (2006) 154-159 [24]. J. Xu, K. Hua, G. Sun, C. Wang, X. Lv, Y. Wang, "Electrooxidation of methanol on carbon nanotubes supported Pt-Fe alloy electrode", Electrochemistry Communications 8 (2006) 982-986 [25]. K. J. Kong, Y. Choi, B. H. Ryu, J. O. Lee, H. Chang, "Investigation of metal/carbon-related materials for fuel cell applications by electronic structure calculations", Materials Science and Engineering: C 26 (2006) 1207-1210 [26]. X. Dong, L. Wang, T. Sun, J. Zhou, Q. Yang, "Study on ethylene polymerization catalyzed by Cp2ZrCl2/carbon nanotube system", Journal of Molecular Catalysis A: Chemical 255 (2006) 10-15 [27]. N. Isogai, M. Takagswa, M. Watabe, K. Yamagishi, "Catalyst composition for decoposition of Methanol",European patent,0342 (1989) 614 [28]. W. H. Cheng, "Reaction and XRD studies on Cu based methanol decomposition catalysts: Role of constituents and development of high-activity multicomponent catalysts", Applied Catalysis A: General 130 (1995) 13-30 [29]. H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, "Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts", Applied Catalysis A: General 28 (2005) 69-73 [30]. A. Mastalir, B. Frank, A. Szizybalski, H. Soerijanto, A. Deshpande, M. Niederberger, R. Schomacker, R. Schlogl, T. Ressler, "Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study", Journal of Catalysis 230 (2005) 464-475 [31]. C. Z. Yao, L. C. Wang, Y. M. Liu, G. S. Wu, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan, "Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts", Applied Catalysis A: General 297 (2006) 151-158 [32]. I. Ritzkopf, S. Vukojevic, C. Weidenthaler, J. D. Grunwaldt, F. Schuth, "Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique", Applied Catalysis A: General 302 (2006) 215-223 [33]. J. Agrell, H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R. M. Navarro, J. L. G. Fierro, "Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3", Journal of Catalysis 219 (2003) 389-403 [34]. B. Lindstrom, L. J. Pettersson, P. G. Menon, "Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on α-alumina for methanol reforming for fuel cell vehicles", Applied Catalysis A: General 234 (2002) 111-125 [35]. C. Fukuhara, H. Ohkura, Y. Kamata, Y. Murakami, A. Igarashi, "Catalytic properties of plate-type copper-based catalysts, for steam reforming of methanol, on an aluminum plate prepared by electroless plating", Applied Catalysis A: General 273 (2004) 125-132 [36]. B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, "Methanol steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network", Applied Catalysis A: General 179 (1999) 21-29 [37]. J. K. Lee, J. B. Ko, D. H. Kim, "Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor", Applied Catalysis A: General 278 (2004) 25-35 [38]. J. P. Shen, C. Song, "Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells", Catalysis Today 77 (2002) 89-98 [39]. A. N. Fatsikostas, X. E. Verykios, "Reaction network of steam reforming of ethanol over Ni-based catalysts", Journal of Catalysis 225 (2004) 435-439 [40]. S. Liu, K. Takahashi, M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading", Catalysis Today 87 (2003) 247-253 [41]. S. Liu, K. Takahashi, K. Uematsu, M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO", Applied Catalysis A: General 283 (2005) 125-135 [42]. S. Liu, K. Takahashi, K. Uematsu, M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component", Applied Catalysis A: General 277 (2004) 265-270 [43]. Y. Suwa, S. I. Ito, S. Kameoka, K. Tomishige, K. Kunimori, "Comparative study between Zn-pd/C and Pd/ZnO catalysts for steam reforming of methanol", Applied Catalysis A: General 267 (2004) 9-16 [44]. A. Karim, T. Conant, A. Datye, "The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol", Journal of Catalysis 243 (2006) 420-427 [45]. K. Klier, V. Chatikavanij, R. G. Herman, G. W. Simmons, "Catalytic synthesis of methanol from CO/H2: IV. The effects of carbon dioxide", Journal of Catalysis 74 (1982) 343-360 [46]. Y. Choi, H. G. Stenger, "Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst", Applied Catalysis B: Environmental 38 (2002) 259-269 [47]. Z. Wang, J. Xi, W. Wang, G. Lu, "Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts", Journal of Molecular Catalysis A: Chemical 191 (2003) 123-134 [48]. L. Alejo, R. Lago, M. A. Pena, J. L. G. Fierro, "Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts", Applied Catalysis A: General 162 (1997) 281-297 [49]. M. L. Cubeiro, J. L. G. Fierro, "Partial oxidation of methanol over supported palladium catalysts", Applied Catalysis A: General 168 (1998) 307-322 [50]. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, J. Riga, A. Lucas, "Catalytic synthesis and purification of carbon nanotubes", Synthetic Metals 77 (1996) 31-34 [51]. H. M. Yang, P. H. Liao, "Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol", Applied Catalysis A: General 317 (2007) 226-233 [52]. J. Feng, C. P. Zhang, "Preparation of Cu-Ni alloy nanocrystallites in water-in-oil microemulsions", J. Colloid Interface Sci. 293 (2006) 414-420 [53]. H. Sakano, T. Koshino, R. Takeuchi, N. Sakai, T. Saito, "Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications", International Journal of Hydrogen Energy 26 (2001) 923-933 [54]. L. C. Wang, Y. M. Liu, M. Chen, Y. Cao, H. Y. He, G. S. Wu, W. L. Dai, K. N. Fan, "Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis", Journal of Catalysis 246 (2007) 193-204 [55]. T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, "Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming", Journal of Molecular Catalysis A: Chemical 268 (2007) 185-194 [56]. Y. F. Li, D. X. F., L. W. M., "Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol", International Journal of Hydrogen Energy 29 (2004) 1617-1621 [57]. J. P. Breen, J. R. H. Ross, "Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts", Catalysis Today 51 (1999) 521-533 [58]. P. H. Matter, U. S. Ozkan, "Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2", Journal of Catalysis 234 (2005) 463-475 [59]. J. Agrell, M. Boutonnet, J. L. G. Fierro, "Production of hydrogen from methanol over binary Cu/ZnO catalysts: Part II. Catalytic activity and reaction pathways", Applied Catalysis A: General 253 (2003) 213-223 [60]. M. M. Gunter, T. Ressler, R. E. Jentoft, B. Bems, "Redox Behavior of Copper Oxide/Zinc Oxide Catalysts in the Steam Reforming of Methanol Studied by in Situ X-Ray Diffraction and Absorption Spectroscopy", Journal of Catalysis 203 (2001) 133-149 [61]. X. Zhang, P. Shi, "Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts", Journal of Molecular Catalysis A: Chemical 194 (2003) 99-105 [62]. Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, "Highly active copper/ceria catalysts for steam reforming of methanol", Applied Catalysis A: General 223 (2002) 137-145 [63]. B. Lindstrom, L. J. Pettersson, "Steam reforming of methanol over copper-based monoliths: the effects of zirconia doping", Journal of Power Sources 106 (2002) 264-273 [64]. J. Papavasiliou, G. Avgouropoulos, T. Ioannides, "Production of hydrogen via combined steam reforming of methanol over CuO/CeO2 catalysts", Catalysis Communications 5 (2004) 231-235 [65]. A. P. Tsai, M. Yoshimura, "Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol", Applied Catalysis A: General 214 (2001) 237-241 [66]. T. Suetsuna, S. Suenaga, T. Fukasawa, "Monolithic Cu-Ni-based catalyst for reforming hydrocarbon fuel sources", Applied Catalysis A: General 276 (2004) 275-279 [67]. S. Liu, K. Takahashi, H. Eguchi, K. Uematsu, "Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials", Catalysis Today 129 (2007) 287-292 [68]. J. Agrell, H. Birgersson, M. Boutonnet, "Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation", Journal of Power Sources 106 (2002) 249-257 [69]. N. Takezawa, N. Iwasa, "Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals", Catalysis Today 36 (1997) 45-56 [70]. J. H. Sinfelt, D. J. C. Yates, "Catalytic hydrogenolysis of ethane over the noble metals of Group VIII", Journal of Catalysis 8 (1967) 82-90 [71]. P. v. d. Plank, W. M. H. Sachtler, "Surface composition of equilibrated copper-nickel alloy films", Journal of Catalysis 7 (1967) 300-303 [72]. J. H. Sinfelt, J. L. Carter, D. J. C. Yates, "Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys", Journal of Catalysis 24 (1972) 283-296 [73]. I. A. Fisher, A. T. Bell, "A Mechanistic Study of Methanol Decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2", Journal of Catalysis 184 (1999) 357-376 [74]. B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, "Methanolsteam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model", Applied Catalysis A: General 179 (1999) 31-49 [75]. J. Xi, Z. Wang, G. Lu, "Improvement of Cu/Zn-based catalysts by nickel additive in methanol decomposition", Applied Catalysis A: General 225 (2002) 77-86 [76]. K. Y. Yu, D. T. Ling, W. E. Spicer, "Thermal desorption studies of CO and H2 from the Cu-Ni alloy", Journal of Catalysis 44 (1976) 373-384 [77]. S. Velu, K. Suzuki, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, "Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation", Journal of Catalysis 194 (2000) 373-384 [78]. T. L. Reitz, S. Ahmed, M. Krumpelt, R. Kumar, H. H. Kung, "Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction", Journal of Molecular Catalysis A: Chemical 162 (2000) 275-285 [79]. T. Sodesawa, M. Nagacho, A. Onodera, F. Nozaki, "Dehydrogenation of methanol to methyl formate over Cu-SiO2 catatysts prepared by ion exchange method", Journal of Catalysis 102 (1986) 460-463
本實驗以Cu、Ni與Ni-Cu合金為觸媒加入ZnO作為促進劑,將其擔持於奈米碳管上,製備觸媒則使用化學還原法與含浸法。實驗探討不同製備觸媒條件對觸媒特性的影響,變數包含奈米碳管酸處理、乙醇添加量、分散劑種類、載體種類、金屬含量、合金比例及金屬與ZnO比例等變數。在甲醇蒸汽重組反應操作變因有反應溫度、反應物水與甲醇比例、重量空間流速、觸媒金屬含量、合金比例、金屬與ZnO比例與觸媒穩定性測試等。在製備觸媒前,先以酸(硝酸/硫酸=3/1 v/v)處理奈米碳管表面去除雜質,使其表面出現缺陷及產生親水官能基,且提高碳管熱性質,而過程中添加適量的乙醇以降低水溶液極性,並增加金屬前驅物吸附於碳管的機會,另外加入分散劑使金屬顆粒可以分散在奈米碳管上,增加金屬表面積。以共同還原法可將Cu與Ni形成Cu-Ni合金,加入氫氧化四甲基銨則可减低顆粒聚集現象,將合金順利擔持在CNTs表面。本研究亦將Cu-Ni合金擔持於活性碳上及使用還原法製備出非合金狀態之Cu/Ni金屬擔持在CNTs上。觸媒特性之分析則使用穿透式電子顯微鏡(TEM)、Xay繞射儀(XRD)、傅立葉轉換紅外線光譜儀(FTIR)、X光能量散佈儀(EDS)、BET表面積與孔洞分析儀(BET)、場發射掃描式電子顯微鏡(FESEM)和熱重分析儀(TGA)。
由TEM分析結果,Cu、Ni與Cu-Ni合金觸媒之金屬顆粒大小約為10-20nm,且金屬顆粒分散性良好。將此觸媒應用在甲醇蒸汽重組反應,金屬含量為23~30wt% Cu80ZnO20/CNTs之觸媒具有高活性,其反應性隨著溫度的增加可得氫氣產率隨之增加。使用23 wt% Cu80ZnO20/CNTs觸媒在溫度為280℃時氫產率可達到83%,而在溫度360℃以上,氫產率則可達到100%,以水與甲醇之莫耳比為1.5為最佳,20 wt% 之Ni20-Cu80/CNTs觸媒在溫度360℃以上,氫氣產率亦可幾乎達到100%。以奈米碳管為載體之觸媒(Ni20-Cu80/CNTs)活性明顯高於以活性碳為載體之觸媒(Ni20-Cu80/C),且亦高於非合金狀態觸媒(Ni20/Cu80/CNTs)。另外,Cu/ZnO/CNTs觸媒雖然表現出高活性,但是觸媒穩定性較低,當Cu觸媒加入Ni使之形成合金狀態,且加入ZnO為促進劑並擔持在奈米碳管後,所形成之(Cu4-Ni1)80/ZnO20/CNTs觸媒則具有很高之反應活性與穩定度,在360℃之甲醇轉化率亦可以達到100 %。其中Ni金屬會影響氫氣吸附與抑制Cu顆粒燒結,而加入ZnO則可以分散並提高觸媒表面積。以40-60 nm管徑之CNTs當作載體,提供了較良好的環境使金屬顆粒使顆粒分散,而增加觸媒觸媒活隨著管徑的增加而提升。在甲醇裂解反應中,Ni的含量與CNTs管徑都會影響觸媒活性與CO的選擇率,反應溫度在200-400℃間隨著Ni含量增加其甲醇轉化率隨之降低,但是CO選擇率隨之增加。

In this dissertation, the purpose of this study is to prepare copper based catalyst supported on carbon nanotubes (CNTs) and to apply it on steam reforming of methanol. Mathanol, compared to natural gas or other hydrocarbons, is a more efficient energy source to produce hydrogen in fuel cell reformer, and steam reforming of methanol reaction is a method to produce hydrogen frequently. Besides, carbon nanotubes can be used as supports of catalysts because of their specific properties, such as high ratio of length to diameter, appropriate pore size distribution, etc. The preparation of catalysts with carbon nanotubes as supports is investigated for production of hydrogen in this study.
Cu, Cu-Ni alloys and Ni catalysts with ZnO as a promoter supported on CNTs are prepared by chemical reduction and wet impregnation methods. The effects of different preparing conditions, including acid-treatment of CNTs, additions of ethanol, type of dispersants and supports of catalyst, metal content, weight ratio of alloys and ratio of metal/ZnO on catalytic activity are explored. Operating parameters in steam reforming of methanol are included reaction temperature, weight hourly space velocity, molar ratio of H2O/CH3OH, metal content, weight ratio of alloys, ratio of metal/ZnO, and stability of catalysts. Before the chemical reduction step, the CNTs should be pre-treated by mixed acids (nitric acid/sulfuric acid= 3/1 v/v) to remove impurities, and to create defects on its surface to form functional groups. The thermal property of CNTs was then enhanced. The hydrophilicity of CNTs was improved by adding a suitable amount of ethanol to make the metal precursors contacting with the surface of CNTs more easily. The addition of dispersant can make metal particles to diperse well on surface of CNTs and increase surface area of metal particles. The Cu-Ni alloys were anchored on the surface of CNTs by co-reduction of Ni- and Cu-precursors under the use of tetra-n-methylammonium hydroxide to reduce the aggregation of Cu-Ni particles. Ni-Cu catalyst supported on activated carbon (Ni-Cu/C) was prepared as well, and bimetal Ni and Cu supported on CNTs (Ni/Cu/CNTs) was attained by successive reduction of first Cu- and then Ni- precursors in this study. The catalysts were characterized by transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectrometer (EDS), Brunauer-Emmett-Teller method (BET), field emission scanning electron microscope (FESEM) and thermogravimetric analysis (TGA).
From TEM analysis a good dispersion of Cu, Ni and Cu-Ni alloys particles with about 10-20 nm on the surface of CNTs was observed. The catalysts with 23 to 30 wt% Cu80ZnO20/CNTs showed high activities, increased with an increase of temperature to produce hydrogen. By using 23 wt% Cu80ZnO20/CNTs as the catalyst, the hydrogen yield was obtained up to 83% at 280oC and nearly 100% at temperatures greater than 360oC with 1.5 of molar ratio of water to methanol. The hydrogen yield in steam reforming of methanol was near 100% at 360oC. Ni affected the chemisorption of H2 catalysts and restrained the sintering of Cu particles. Moreover, ZnO dispersed Cu80-Ni20 particles well and increased surface area of catalysts. CNTs with 40-60 nm of tube diameters provided better environment to disperse metals and to enhance activity of catalysts. Both of the Ni content of catalysts and tube diameters of CNTs affected activities and CO selectivity in decomposition of methanol. The increasing Ni content of catalysts made lower CH3OH conversion and higher CO selectivity at 200-400 oC.
In this study, we successfully prepared Cu, Ni, Cu-Ni alloys and ZnO supported on CNTs with chemical reduction and impregnation method, and applied in steam reforming of methanol efficiently.
其他識別: U0005-2901200818192800
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.