Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3666
標題: 有機插層蒙脫土的層間距操控與自發排列結晶之研究
Manipulating Basal Spacing Expansion and Self-Assembling Crystallization of Intercalated Montmorillonite
作者: 李榮哲
Lee, Rong-Jer
關鍵字: Montmorillonite;蒙脫土;Basal Spacing;Poly(propylene oxide);Self-Assembly;Crystallization;層間距;聚丙烷銨;自發排列;結晶
出版社: 化學工程學系所
引用: [1] A. Okada; A. Usuki, Mater. Sci. Eng. C3 1995, 72, 109. [2] B. M. Novak, Adv. Mater. 1993, 5, 442. [3] E. P. Giannelis, Adv. Mater. 1996, 8, 29. [4] Y. Fukushima, S. J. Inagaki, Inclusion Phenom. 1987, 5, 473. [5] A. Usuki, M. Kawasumi, Y. Kojima, A Okada, T. Kurauchi, J. Mater. Res. 1993, 8, 1174. [6] Y. Kojima, A. Usuki, M. Kawasumi, Y. Fukushima, A. Okada, T. Kurauchi, J. Polym. Sci.: Part A: Polym Chem. 1993, 31, 1755. [7] A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurachi, O. Kamigaito, J. Mater. Res. 1993, 8, 1179. [8] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, J. Mater. Res. 1993, 8, 1185. [9] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, J. Appl. Polym. Sci. 1993, 49,1259. [10] N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki, A. Okada, J. Appl. Polym. Sci. 1998,67, 87. [11] M. Kato, A. Usuki, A Okada, J. Appl. Polym. Sci. 1997, 66, 1781. [12] K. Yano, A. Usuki, A. Okada, T. Kurauchi, O. Kamigaito, J. Appl. Polym. Sci. 1993, 31, 2493. [13] Y. Yang, Z. Z. Zhu, J. Yin, X. Y. Wang, Z. E. Qi, Polymer 1999, 40, 4407. [14] H. L. Tyan, Y. C. Liu, K. H. Wei, Chem. Mater. 1999, 11, 1942. [15] J. C. Huang, Z. K. Zhu, J. Yin, X. F. Qian, Y. Y. Sun, Polymer 2001, 873. [16] M. S. Wang, T. J. Pinnavaia, American Chemical Society 1994, 6, 468. [17] T. Lan, P. D. Kaviratna, T. J. Pinnavaia, J. Phys. Chem Solids 1996, 57, 1005. [18] D. C. Lee, L. W. Jang, J. Appl. Polym. Sci. 1998, 68, 1997. [19] Z. Wang, T. J. Pinnavaia, Chem. Mater. 1998, 10, 1820. [20] U.S Patent 6,057,396. (1997) Lan et al. Intercalates formed by co-intercalation of monomer, oligomer or polymer intercalants and surface modifier intercalants and layered materials and nanocomposites prepared with the intercalates. [21] U.S Patent 5,554,670. (1996) Giannelis et al. Method of preparing layered silicate-epoxy nanocomposites. [22] U.S Patent 5,760,106. (1998) Pinnavaia et al. Sealant method of epoxy resin-clay composites. [23] T. K. Chen, Y. I. Tien, K. H. Wei, Polymer 2000, 41, 1345. [24] X. Fu, S. Qutubuddin, Materials Letters 2000, 42, 12. [25] X. Fu, S. Qutubuddin, Polymer 2001, 42, 807. [26] Y. C. Ke, C. F. Long, Z. N. Qi, J. Appl. Polym. Sci. 1999, 71, 1139. [27] U.S Patent 5,972,448. (1999) Frisk et al. Nanocomposite polymer container. [28] D. C. Lee, L. W. Jang, J. Appl. Polym. Sci. 1996, 61, 1117. [29] M. P. Eastman, E. Bain, T. L. Porter, K. Manygoats, R. Whitehorse, R. A. Parnell, M.E. Hagerman, Applied Clay Science 1999, 15, 173. [30] J. W. Kim, M. H. Noh, H. J. Choi, D. C. Lee, M. S. Jhon, Polymer 2000, 41, 1229. [31] E. P. Giannelis, Adv. Mater. 1996, 8. 29. [32] J. J. Lin, C. C. Chou, J. L. Lin, Macromol. Rapid Comm., 2004, 25.1109. [33] J. J. Lin, Y. M. Chen, Langmuir 2004,20. 4261. [34] J. J. Lin , C. C. Chu, C. C. Chou, F. S. Shieu, Adv. Mater. 2005, 17. 301. [35] J. J. Lin, I .J. Cheng, R.Wang, R. J. Lee, Macromolecules 2001, 34. 8832. [36] A. Marmur, J. Am. Chem. Soc. 2000, 122, 2120. [37] H. Ishida, S. Campbell, J. Blackwell, Chem. Mater. 2000, 12, 1260. [38]A. Akelah, A. Moet, Journal of Applied Polymer Science: Applied Polymer Symposium 1994, 55, 153. [39] E. Giannelis, In Materials Chemistry, an Emerging Discipline: L. V. Interrante, L. A. Casper, A. B. Ellis, Ed.; Advances in ChemistrySeries 245, American Chemical Society, Washington DC 1995, 259-281. [40]S. C. Tjong, Mater. Sci. Eng. R Rep., 2006, 53, 73. [41] C. E. Powell, G. W. Beall, Curr. Opin. Solid State Mater. Sci., 2006, 10, 73. [42] M. Alexandre, P. Dubois, Mater. Sci. Eng., 2000, 28, 1. [43] E. Tombácz, M. Szekeres, Appl. Clay Sci., 2006, 34, 105. [44] P. C. Odiachi, D. C. Prieve, Colloid Surface Physicochem. Eng. Aspect, 1999, 146, 315. [45] T. Hugel, M. Grosholz, H. Clausen-Schaumann, A. Pfau, H. Gaub, M. Seitz, Macromolecules 2001, 34, 1039. [46] L. J . Magid, Z. Li, P. D.Butler, Langmuir 2000, 16, 10028. [47] M. Biswas, S. S. Ray, Polymer 1998, 39, 6423. [48] X. Kornmann, L. A. Berglund, J. Sterte, Polym Eng Sci 1998, 38, 1351. [49] P. C. LeBaron, Z. Wang, T. J. Pinnavaia, Applied Clay Science 1999, 15, 11. [50] S. J. Wang, C. F. Long, X. Y. Wang, Q. Li, Z. N. Qi, J Appl Polym Sci 1998, 69, 1557. [51] C. V. Nicholas, D. J. Wilson, C. Booth, J. R. M. Giles, Br. Polym J 1988, 20, 289. [52] P. M. Blonsky, D. F. Shriver, P. Austin, H. R. Allcock, J Am Chem Soc 1984, 106, 6854. [53] M. Forsyth, M. Garcia, D. R. MacFarlane, P. Meakin, S. Ng, M. E. Smith, Solid State Ionics 1996, 85, 209. [54] X. Andrieu, T. Vicedo, C. Fringant, J Power Sources 1995, 54, 487. [55] E. Ruiz-Hitzky, P. Aranda, Adv Mater 1990, 2, 545. [56] P. Aranda, E. Ruiz-Hitzky, Chem Mater 1992, 4, 1395. [57] R. A. Vaia, H. Ishii, E. P. Giannelis, Chem Mater 1993, 5, 1694. [58] J. P. Lemmon, J. Wu, C. Oriakhi, M. Lerner, Electrochim Acta 1995, 40, 2245. [59] R. A. Vaia, K. D. Jandt, E. J. Kramer, E. P. Giannelis, Macromolecules 1995, 28, 8080. [60] C. Oriakhi, M. Lerner, Chem Mater 1996, 8, 2016. [61] J. J. Tunney, C. Detellier, Chem Mater 1996, 8, 927. [62] S. Wong, R. A. Vaia, E. P. Giannelis, D. B. Zax, Solid State Ionics 1996, 86–88, 547. [63] R. A. Vaia, B. B. Sauer, O. K. Tse, E. P. Giannelis, J. Polym. Sci. Part B: Polym Phys 1997, 35, 59. [64] S. Wong, S. Vasudevan, R. A. Vaia, E. P. Giannelis, D. B. Zax, J Am Chem Soc 1995, 117, 7568. [65] R. Krishnamoorti, R. A. Vaia, E. P. Giannelis, Chem Mater 1996, 8, 1728. [66] F. Leroux, B. E. Koene, L. F. Nazar, J. Electrochem. Soc. 1996, 143, L181. [67] H. Yokoi, S. Kawata, M. Iwaizumi, J. Am. Chem. Soc. 1986, 108, 3358. [68] H. Yokoi, S. Kawata, M. Iwaizumi, J. Am. Chem. Soc. 1986, 108, 3361. [69] Y. Matsuo, K. Tahara, Y. Sugie, Chem. Mater. 1998, 10, 2266-2269 [70] 鄭淑芬,’’層狀化合物的觸媒活性’’,Chemistry (The Chinese Chem. Soc., Taiwan China) 1987, 45, 127. [71] H. V. Olphen. Clay colloid Chemistry, Chapter V, Wiley-Interface publication 1977, New York. [72] J. Konta, Applied Clay Science 1995, 10, 275. [73] A. Akelah, A. Moet, J. Appl. Polym. Sci: Appl. Polym. Symp. 1994, 55, 153. [74] 吳仁傑,’’工業材料’’,民國86年5月,125期,115. [75] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, J. Polym. Sci.: Part A: Polym. Chem. 1993, 31,1755 [76] 林希哲,’’X光繞射實驗方法簡介”,科儀新知,第十卷,第一 期, P25-33. 1988. [77] 劉興鑑主編,”儀器分析”,全威圖書有限公司 2000. [78] R. Atkin, V. S. J. Craig, E. J. Wanless, S. Biggs, Adv. Colloid Interface Sci. 2003, 103, 219 [79] R. Roy, S. Komarneni, D. M. Roy, Mater. Res. Soc. Symp. Proc. 1984, 22, 347. [80] T. Lan, P. D. Kaviratna, T. Pinnavaia, J. Chem. Mater. 1995, 7, 2144. [81] P. B. Messersmith, E. P. Giannelis, Chem. Mater. 1994, 6, 1719. [82] K. Yano, A. Usuki, A. Okada, J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 2289. [83] H. L. Tyan, Y. C. Liu, K. H. Wei, Polymer 1999, 40, 4877. [84] M. M. Al-Esaimi, J. Appl. Polym. Sci. 1997, 64, 367. [85] S. R. Chitnis; M. M. Sharma, Reactive & Functional Polymers 1997, 32, 93. [86] T. J. Pinnavaia, , Science 1983 , 220 , 365 . [87] A. D. Cristofaro, A. Violante, Applied Clay Science 2001, 19, 59 [88] J.H. He, J.C. Zhang Journal of Polymer Science: Part A: Polymer Chemistry, 1999, 37, 4521. [89] C. Dursuna, M. Degirmencia, Y. Yagcia,, S. Jockuschb,N. J. Turrob Polymer, 2003, 44, 7389. [90] X. Hong, J. Lu, S. Duan, O. Chen, P. Wang J. Vac. Sci. Technol. B, 1999, 17, 2084. [91] A.Kunze, U.Muller, K.Tittes, J. P. Fouassier, F.M. Savary, J. Photochem. and Photobiology A, 1997, 110, 115. [92] M. Kowalska, D. L. Cocke, Chemosphere 1998, 36, 547. [93] J.H. Choy, S.Y. Kwak,,Y.S Han, B.W. Kim, Materials Letters, 1997, 33, 143. [94] X. Fu, S. Qutubuddin, Polymer , 2001, 42, 807. [95] P. Aranda, E. Ruiz-Hitzky, Applied Clay Science , 1999, 15, 119. [96] G. Eckert, M Goez, B. Maiwald, U. Muller, B. Bunsenges, Phys.Chem., 1996, 100, 1191. [97] V. Jancovicova, V. Brezová , M. Ciganek , Z. Cibulková, Journal of Photochem. and Photobiology A, 2000, 136, 195. [98] B. Han, G. Ji, S. Wu, J. Shen, European Polymer J. 2003, 39, 1641. [99] D. A. Braden, E. E. Parrack, D. R. Tyler, Coordination Chemistry Reviews, 2001, 211, 279. [100] P. Janos, Journal of Chromatography A, 1999, 834, 3. [101] I. Lakatos, J.Lakatos-Szabo, Colloids and Surfaces A, 1998, 141, 425. [102] J. C. Schulz, G. G. Warr, Langmuir 2000, 16, 2995. [103] R.A. Vaia, E.P. Giannelis, Macromolecules 1997, 30, 7990. [104] K.A. Carrado, Applied Clay Science 2000, 17, 1. [105] Y. Umemura, A. Yamagishi, R.A. Schoonheydt, A. Persoons, F.d. De Schryver, Langmuir 2001, 17, 449. [106] B. Van Duffel, R.A. Schoonheydt, P.C.M. Grim, F.D. De Schryver, Langmuir 1999, 15, 7520. [107] C. Zeng, L.J. Lee, Macromolecules 2001, 34 4098. [108] K. Sonobe, K. Kikuta, K. Takagi, Chem. Mater. 1999, 11, 1089. [109] K.A. Carrado, L. Xu, Chem. Mater. 1999, 10, 1440. [110] R.A. Vaia, E.P. Giannelis, Macromolecules 1997, 30, 8000. [111] K. A. Page, K. Adachi, Polymer 2006, 47, 6406. [112] A. Szu1cs, T. Haraszti, I. De´ka´ny, J.H. Fendler, J. Phys. Chem. B 2001, 105, 10579. [113] P.F. Luckham, S. Rossi, Adv. Colloid Interface Sci. 1999, 82, 43. [114] T.D. Fones, P.J. Yoon, H. Keskkula, D.R. Paul, Polymer 2001, 42, 9929. [115] P. Kodgire, R. Kalgaonkar, S. Hambir, N. Bulakh, J.P. Jog, J Appl Polym Sci. 2001, 81, 1786. [116] V.V. Ginzburg, C. Singh, A.C. Balazs, Macromolecules 2000, 33, 1089. [117] K.A. Carrado, G.W. Zajac, K. Song, J.R. Brenner, Langmuir 1997, 13, 2895. [118] P. Maiti, P.H. Nam, M. Okamoto, N. Hasegawa, A. Usuki, Macromolecules 2002, 35, 2042. [119] G. Jimenez, N. Ogata, H. Kawai, T. Ogihhara, T. J Appl Polym Sci. 1997, 64, 2211. [120] J.C.P. Gabriel, C. Sanchez, P. Davidson, J. Phys. Chem. 1996, 100, 11139. [121] T. Abe, S. Hayashi, N. Higashi, M. Niwa, K. Kurihara, K. Colloids and Surfaces A 2000, 169, 351. [122] K Ataka, M. Osawa Langmuir 1998, 14, 951. [123] J. W. A. van den Berg, G. van de Ridder, ,C. A. Smolders, Eur. Polymer J. 1981, 17, 935. [124] R. Tuinier, J. Rieger, C. G. de Kruif, Adv. Colloid Interface Sci. 2003, 103, 1. [125] S. Schwarz, K. Lunkwitz, B. Keßler, U. Spiegler, E. Killmann, W. Jaeger, Colloid Surface Physicochem. Eng. Aspect 2000, 163, 17. [126] A. M. Zhivkov, J. Colloid Interface Sci. 2007, 313, 122. [127] B. Vincent, Colloid Surface 1990, 50, 241. [128] P. G. de Gennes, Macromolecules 1981, 14, 1637. [129] R. Tuinier, G. A. Vliegenthart, H. N. W. Lekkerkerker, J. Chem. Phys. 2000, 113, 10768. [130] P. C. Odiachi, D. C. Prieve, Colloid Surface Physicochem. Eng. Aspect 1999, 146, 315. [131] H. Egger, K. M. McGrath, Colloid Surface Physicochem. Eng. Aspect 2006, 275, 107. [132] A. Vrij, Colloid Surface Physicochem. Eng. Aspect 2003, 213, 117. [133] J. E. Seebergh, J. C. Berg, Langmuir 1994, 10, 454. [134] V. D. Gordon, X. Chen, J. W. Hutchinson, A. R. Bausch, M. Marquez, D. A. Weitz, J. Am. Chem. Soc. 2004, 126, 14117. [135] A. McFarlane, K. Bremmel, J. Addai-Mensah, J. Colloid Interface Sci. 2006, 293, 116. [136] M. Fuchs, K. S. Schweizer, Europhys. Lett. 2000, 51, 621. [137] R. R. Netza;b, D. Andelmanc, Phys. Rep. 2003, 380, 1. [138] S. S. Ray and M. Okamoto, Progr. Polymer Sci. 2003, 28, 1539. [139] P. Liu, Appl. Clay Sci. 2007, 38, 64. [140] J.W. Gilman, Appl. Clay Sci. 1999, 15, 31. [141] N. Ogata, S. Kawakage, T. Ogihara, Polymer 1997, 38, 5115. [142] M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada, Macromolecules 1997, 30, 6333. [143] N. Hasegawa, H. Okamoto, M. Kawasumi, A.Usuki, J. Appl. Polym. Sci. 1999, 74, 3359. [144] C.D. Muzny, B.D. Butler, H.J.M. Hanley, F. Tsvetkov, D.G. Peiffer, Mater. Lett. 1996, 28, 379. [145] N. P. Patela, C. M. Aberga, A. M. Sancheza, M. D. Capracottab, J. D. Martinb, R. J. Spontak, Polymer 2004, 45, 5941. [146] C.E. Powell, G.W. Beall, Curr. Opin. Solid State Mater. Sci. 2006, 10, 73. [147] M. Alexandre, P. Dubois, Mater. Sci. Eng. 2000, 28, 1. [148] S.C. Tjong, Mater. Sci. Eng. R Rep. 2006, 53, 73. [149] J.C.P. Gabriel, C. Sanchez, P.J. Davidson, Phys. Chem. 1996, 100, 11139. [150] K.A. Carrado, Appl. Clay Sci. 2000, 17, 1. [151] C. Pereira, S. Patrício, A.R. Silva, A.L. Magalhães, A.P. Carvalho, J. Pires , C. Freire, J. Colloid Interface Sci. 2007, 316, 570. [152] S. Petit, D. Righi, J. Madejová, Appl. Clay Sci. 2006, 34, 22. [153] A.L. Sobolewski, W. Domcke, J. Phys. Chem. 2002, 106, 4158. [154] E. Tombácz, M. Szekeres, Appl. Clay Sci. 2006, 34, 105.
摘要: 
本研究的主要目的為插層蒙脫土(Montmorillonite)的[001]間距膨脹與堆疊結晶的研究。於本論文中將先研究探討蒙脫土的層間距中的分子斷裂反應。探討水油界面 (liquid/liquid phase)對插層蒙脫土堆疊結晶的影響,及研究二價銅離子對插層蒙脫土自組裝結晶(self-assembling crystallization)效應的強化與破壞過程。
在探討錪鎓鹽在層狀矽酸鹽中的分子斷裂反應對蒙脫土層間距的影響研究中,利用熱重分析( Thermal Gravimetric Analysis)量測有機改質蒙脫土的成份 ,廣角X光繞射儀(wide angle X-ray Diffraction, XRD)分析光照射反應對層間距影響,電子順磁共振(Electron Paramagnetic Resonance, EPR)觀察即時(in situ)的光酸反應, 和透射電子顯微鏡( Transmission Electron Microscope)分析叔-丁基甲基丙烯酸酯共聚物,受有機碘鹽(Iodonium)插層蒙脫土的路易士酸催化反應研究。
蒙脫土經聚醚胺插層改質後,利用廣角X光繞射儀量測不同改質蒙脫土之層狀矽酸鹽層之平均層間間距,以掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)觀察改質後之表面型態,再以表面張力( Surface Tension Analyzer)研究聚醚胺種類對蒙脫土層間的滲透差異。
二價銅離子對聚醚烷胺吸附矽酸鹽的d[ 001 ]晶格結構的施加滲透壓,研究二價銅離子添加量對有機矽酸鹽自組裝結晶之形成及壓縮破壞之機制。硫酸銅( II )與聚醚烷胺的共插層蒙脫土從掃描式電子顯微鏡觀察到10 μ m長的晶體,其d[ 001 ]層壘結晶較原始蒙脫土成長百倍以上。利用廣角X光繞射儀取得繞射光譜,由繞射波峰強度與反射位序(order of reflection)的關係,計算 Bragg’s law 中的結晶面間距。二價銅離子的插層量是利用感應耦合電漿原子發光分光分析法(Inductively Coupled Plasma) 測定獲得,研究吸附量對蒙脫土層間距及二次結晶的影響。
由以上實驗研究,本論文得到重要成果如下:
(1) 利用錪鎓鹽與叔丁基甲基丙烯酸酯共聚物在層狀矽酸鹽中的分子斷裂反應,探討分子斷裂對蒙脫土層間距的影響,及矽酸鹽對反應基團擴散的籠蔽效應(cage effect)。矽酸鹽中的分子斷裂反應在蒙脫土表面上產生10nm 氣胞 。
(2). 比較層間距及分子鏈長,計算插層聚醚胺的特徵系數(characteristic factor)。利用水/甲苯的界面張力對聚醚胺插層矽酸鹽的作用,使任意分散狀態的插層蒙脫土,經自對位堆疊形成向列(nematic)結晶。
(3). 銅離子與聚醚胺共插層矽酸鹽,觀察到高分子長度產生靜電增長的效果,可使蒙脫土的層間距增加,並因抽離(depletion)效應,形成凝聚結晶。

The purposes of this study are an investigation on manipulating the basal spacing [001] and self-assembling crystallization of intercalated montmorillonite. This research begins with studying the characteristic factor of polyether-amines and the intercalation spacing between the layers of montmorillonite, as well as the radical cation's transfer restrictions in the spacing gallery. At the water-toluene interface (liquid / liquid phase), intercalated montmorillonites are then set to stack and form nematic crystallization; and co-intercalation of copper ions and polyether-amines were intercalated in the crystal's layer to probe the effects on strengthening and destruction process of self-assembly crystallization.
Within the interlayer's spacing of montmorillonite, the diffusion of radical and cation species was retarded. For this problem, tert-butyl acrylate copolymer was synthesized. Thermal gravimetric analysis, wide-angle X-ray diffraction instrument analysis, and electron paramagnetic resonance were respectively used for the measurement of organic composition weight-loss of intercalated montmorillonite, interlayer spacing, and observation of the photo-acid-catalyzed-reaction in situ. Additionally, transmission electron microscopy was employed to visualize nano-bubble forming of iso-butene breakage from a Lewis acid catalyzed reaction between tert-butyl acrylate copolymer and the organic salt (Iodonium) intercalation montmorillonite.
The co-intercalation of copper ions with polyether-amines (POP) were imposed for osmotic pressure to the surfaces of organo-silicates, and a self-assembling crystalline formation is caused by depletion effect. Copper (II) sulfate and a total of polyether-amines co-intercalated montmorillonite show a 10 μm-long crystal under observation by scanning electron microscope. The special d [001] crystallization was compared to the original POP/MMT composite, and found more than 100 times in increasing dimension.
In assignment of the peaks of X-ray diffractogram, diffraction peak strength and the order of reflection were correlated in this work. The adsorption amount of intercalated copper ions was analyzed by the use of inductively coupled plasma (ICP) for copper element. The absorption and dissolution of copper ions in solid and liquid phase, respectively, are important factor for the basal spacing expansion and self-assembly of organo-silicates.
As studied from the above experiments, this thesis summarizes some key results below:
(1) Molecules cleavage in the silicate gallery, which induced by a photo-excitated reaction between iodonium salt and tert-butyl methacrylate copolymer; and radical species was found to be extinguished as the species was trapped in ‘cage' of MMT's hydrophilic surface.
(2) At water / toluene interface, surface tension applied on polyether amines intercalated montmorillonite for the random dispersed composites to form a new nematic crystal.
(3) Copper ions and polyether amines co-intercalated silicate, a polymer length extension, and basal spacing of orgao-silicate further increasing were found, as well as a crystal is formed from order aggregation due to depletion effect.
URI: http://hdl.handle.net/11455/3666
其他識別: U0005-0608200816322600
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.