Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3668
DC FieldValueLanguage
dc.contributor王麗芳zh_TW
dc.contributor陳崇賢zh_TW
dc.contributor.advisor邱信程zh_TW
dc.contributor.author蔡佩玲zh_TW
dc.contributor.authorTasi, Pei-Lingen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T05:32:24Z-
dc.date.available2014-06-06T05:32:24Z-
dc.identifierU0005-0808200810525100zh_TW
dc.identifier.citation1. Gref, R.; Domb, A.; Quellec, P.; Blunk, T.; Mueller, R. H.; Verbavatz, J. M.; Langer, R. Adv. Drug. Delivery Rev. 1995, 16, 215. 2. Douglas, S.J.; Davis, S.S.; Illum, L. Crit. Rev. Ther. Drug Carr. Syst. 1987, 3, 233. 3. Moghimi, S. M.; Hedeman, H.; Muir, I. S.; Illum, L.; Davis, S. S. Biochim. Biophys. Acta. 1993, 1157, 233. 4. Bokias, G.; Hourdet, D.; Iliopoulos, I. Macromolecules 2000, 33, 2929. 5. Maruyama, A.; Katoh, M.; Ishihara, T.; Akaike, T. Bioconjugate Chem. 1997, 8, 3. 6. Kwon, G. S.; Kataoka, K. Adv. Drug. Delivery Rev. 1995, 16, 295. 7. Yokoyama, M. Crit. Rev. Ther. Drug Carrier Syst. 1992, 9, 213. 8. Kreuter, J. Colloidal Drug Delivery System; Marcel Dekker: New York, 1994, 219. 9. Bader, H.; Ringsdorf, H.; Schmidt, B. Angew. Makromol. Chem. 1984, 123, 457. 10. Yokoyama, M.; Miyauchi, M.; Yamada, N.; Okano, T.; Sakurai Y.; Kataoka, K.; Inoue, S. Cancer Res. 1990, 50, 1693. 11. Thalberg, K.; Lindman, B. Langmuir 1991, 7, 277. 12. OHBU, K.; HIRAISHI, O.; KASHIWA, I. J. Am. Oil Chem. Soc. 1982, 59, 108. 13. Goddard, E.D.; Hannan. R. B. J. Am. Oil Chem. Soc. 1977, 54, 561. 14. Bronich, T. K.; Kabanov, A. V.; Kabanov, V. A.; Yu, K.; Eisenberg, A. Macromolecules 1997, 30, 3519. 15. Kreuter, J. Colloidal Drug Delivery System; Marcel Dekker: New York, 1994, 219. 16. Bader, H.; Ringsdorf, H.; Schmidt, B. Angew. Makromol. Chem. 1984, 123, 457. 17. Yokoyama, M.; Miyauchi, M.; Yamada, N.; Okano, T.; Sakurai Y.; Kataoka, K.; Inoue, S. Cancer Res. 1990, 50, 1693. 18. Rolland, A.; O’Mullane, J.; Goddard, P.; Brookman, L.; Petrak, K. J. Appl. Polym. Sci. 1991, 44, 1195. 19. K. E. L. Barrett, Dispersion Polymerization in Organic Media, Wiley, London (1975). 20. Letchford, K.; Burt, H. Eur. J. Pharm.Biopharm. 2007, 65, 259. 21. Ahmad, S.; Glavas, N. A.; Bragg, P. D. J. Mol. Biol. 1994, 234, 13. 22. Goddard, E. D. Colloids and Surfaces 1986, 19, 255. 23. Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C. M.; Bates, F. S.,; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143. 24. Schmidt C.F.; Svoboda, K.; Lei, N.; Petsche, I. B.; Berman, L. E.; Safinya, C. R.; Grest, G. S. Science 1993, 256, 952. 25. Photos, P. J.; Bacakova, L.; Discher, B.; Bates, F. S.; Discher, D. E. J. Control. Rel. 2003, 90, 323. 26. Najafi, F.; Sarbolouki, M. N. Biomaterials 2003, 24, 1175. 27. Rijcken, C. J. F.; Soga, O.; Hennink, W. E.; van Nostrum, C.F. J. Control. Rel. 2007, 120, 131. 28. Discher, D. E.; Eisenberg, A. Science 2002, 297, 967. 29. Antonietti, M.; Forster, S. Adv. Mater. 2003, 15, 1323. 30. Discher, D. E.; Ahmed, F. Annu. Rev. Biomed. Eng. 2006, 8, 323. 31. 廖明隆, 界面化學與界面活性劑, 文源書局有限公司, 1994. 32. Israelachvili, J.N.; Mitchel, D.J.; Ninham, B.W. J. Chem. Soc., Faraday Trans. 2 1976, 72, 1525. 33. Koopal, L. K.; Goloub, T.; de Keizer, A.; Sidorova, M. P. Collois Surf. A: Physicochem. Eng. Asp. 1999,151, 15. 34. Soltero, J. F. A.; Bautista, F.; Pecina1, E.; Puig, J. E.; Manero, O.; Proverbio, Z.; Schulz, P.C. Colloid Polym Sci 2000, 278, 37. 35. Cooke, D. J.; Blondel, J. A. K.; Lu, J.; Thomas, R. K.; Wang, Y.; Han, B.; Yan, H.; Penfold, J. Langmuir 1998, 14, 1990. 36. Penfold, J.; Staples, E.; Tucker, I.; Creeth, A.; Hines, J.; Thompson, L.; Cummins, P.; Thomas, R. K.; Warren, N. Collois Surf. A: Physicochem. Eng. Asp 1997, 128, 107. 37. Kötz, J.; Kosmella, S.; Beitz, T. Prog. Polym. Sci. 2001, 26, 1199. 38. Balomenou, I.; Bokias, G Langmuir 2005, 21, 9038. 39. Bronich, T. K.; Cherry, T.; Vinogradov, S. V.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. Langmuir 1998, 14, 6101. 40. Nisha, C. K.; Basak, P.; Manorama, S. V.; Maiti, S.; Jayachandran, K. N. Langmuir 2003, 19, 2947. 41. Kizhakkedathu, J. N.; Nisha, C. K.; Manorama, S. V.; Maiti, S. Macromol. Biosci. 2005, 5, 549. 42. Chen, W.; Chen, H.; Hu, J.; Yang, W.; Wang, C. Collois Surf. A: Physicochem. Eng. Asp 2006, 278, 60. 43. Abuin, E. B.; Scaiano, J. C. J. Am. Chem. Soc. 1984, 106, 6274. 44. Lavasanifar, A.; Samuel, J.; Kwon, G. S. Adv. Drug Del. Rev. 2002, 54, 169. 45. Allen, C.; Maysinger, D.; Eisenberg, A. Colloids Surf. B. 1999, 16, 3. 46. Kataoka, K.; Togawa, H.; Harada, A.; Yasugi, K.; Matsumoto, T.; Katayose, S. Macromolecules 1996, 29, 8556. 47. Thuemann, A. F.; Beyermann, J.; Kukula, H. Macromolecules 2000, 33, 5906. 48. Everaars, M. D.; Nieuwkerk, A. C.; Denis, S.; Marcelis, A. T. M.; Sudho¨lter, E. J. R. Langmuir 1996, 12, 4042. 49. Goldraich, M.; Schwartz, J. R.; Burns, J. L.; Talmon, Y. Colloids Surf., A 1997, 125, 231. 50. Kabanov, V. A.; Bronich, T. K.; Kabanov, A. V.; Eisenberg, A. Polym. Prepr. 1997, 38, 648. 51. Bermudez, H.; Hammer,D. A.;Discher, D. E. Langmuir 2004, 20, 540. 52. Marques, E. F. Thermochimica Acta 2002, 394, 31. 53. Owen, R. L.; Strasters, J. K.; Breyer, E. D. Electrophoresis 2005, 26, 735. 54. Cruciani, O.; Mannina, L.; Sobolev, A. P.; Cametti, C.; Segre, A. Molecules 2006, 11,334. 55. Zalipsky, S. Bioconjugate Chem.1995, 6, 150. 56. Zalipsky, S. Adv. Drug Deliv. Rev., 1995, 16, 157. 57. Harris, J. M. Poly(eyhylene glycol) Chemistry : Biotechnical and Biomedical Applications, Plenum Press, New York, 1992. 58. Merril, E. W.; Salzman, E. W. ASAIO J. 1983, 6, 60. 59. Dreborg, S.; Akerlom, B. Crit. Rev. Ther. Drug Carrier Syst. 1990, 6, 315. 60. Yamaoka, T.; Tabata, Y.; Ikada, Y. J. Pharm. Sci. 1994, 83, 601. 61. G. Blume, G. Cevc, Biochem. Biophys. Acta. 1993, 157, 1146. 62. Jeon, S. I. ; Lee, J. H.; Andrade, J. D.; de Gennes, P. G. J. Colloid Interdace Sci. 1991, 142, 149. 63. Ricka, J.; Tanaka, T. Macromolecules 2001, 17, 2916. 64. Adalsteinsson, O.; Lamotte, A.; Baddour, R. F.; Colton, C. K.; Pollak, A.; Whitesides, G. M. J. Molecular Catalysis 1979, 6, 199. 65. Zalipsky, S.; Gilon, C.; Zilkha, A. J. Polym. Sci. Symp. 1983, 19, 1177. 66. Mokrasch, L. C. Analytical Biochemistry 1976, 18, 64. 67. Wang, C.; Tam, K. C. J. Phys. Chem. B 2004, 108, 8976. 68. Arotcarena, M.; Heise, B.; Ishaya, S.; Laschewsky, A. J. Am. Chem. Soc 2002, 123, 3787. 69. Bronich, T. K.; Popov, A. M.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. Langmuir 2000, 16, 481. 9. 70. Bailey, F. I., Jr.; Gallard, R. W. J. Appl. Polym. Sci. 1959, 1, 56. 71. Solomatin,S. V.; Bronich,T. K.; Bargar, T. W.; Eisenberg,, A.; Kabanov, V. A.; Kabanov, A. V. Langmuir 2003, 19, 806 72. Kabanov, A. V.; Bronich, T. K.; Kabanov, V. A.; Yu, K.; Eisenberg, A. J. Am. Chem. Soc. 1998, 120, 9941. 73. Lee, Y. S.; Woo, K. W. Bull. Korean Chem. Soc. 1993, 14, 392. 74. Villeneuve, M.; Ootsu, R.; Ishiwata, M.; Nakahara, H. J. Phys. Chem. B 2006, 110, 17830. 75. Bloom, M.; Burnell, E. E.; MacKay, A. L.; Nichol, C. P.; Valic, M. I.; Weeks, G. Biochemistry 1978, 17, 5750. 76. Costa, G. D.; Mouret, L.; Chevance1, S.; Rumeur, E. L.; Bondon, A. Eur Biophys J. 2007, 36, 933. 77. Oka, K.; Hara, S. J. Am. Chem. Soc. 1977, 99, 3860. 78. Pitcher, W. H.; Huestis, W. H. Biochem. Biophys. Res. Commu. 2002, 296, 1352. 79. Yan, Y.; Xiong, W.; Huang, J.; Li, Z.; Li, X.; Li, N.; Fu, H. J. Phys. Chem. B 2005, 109, 357. 80. Bhattacharya, S.; Bajaj, A. J. Phys. Chem. B 2007, 111, 13511. 81. Feitosa, E.; Jansson, J.; Lindman, B. Chem. Phys. Lipids 2006, 142, 128. 82. Jung, M.; German, A. L.; Fischer, H. R. Colloid Polym Sci 2001, 279, 105. 83. Kim, B.; Ishizawa, M.; Gong, J.; Osada, Y. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 635. 84. Chen, Y. M.; Matsumoto, S.; Gong, J. P.; Osada, Y. Macromolecules 2003, 36, 8830. 85. Zhou, S.; Yeh, F.; Burger, C.; Chu, B. J. Polym. Sci. Part B: Polym. Phys. 1999, 37, 2165. 86. Koide,A.; Kishimura, A.; Osada, K.; Jang, W. D.; Yamasaki, Y.; Kataoka, K. J. Am. Chem. Soc. 2006, 128, 5988.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3668-
dc.description.abstract中文摘要 本研究利用單一及一對疏水碳鏈之陽離子型界面活性劑Dodecyltrimethylammonium bromide (DTAB)、didodecyldimethyl- ammonium bromide (DDAB)分別與陰離子型之接枝高分子以靜電交互作用力相結合。根據螢光(fluorescence technique)、動態光散射(dynamic light scattering, DLS)、界面電位(Zeta potential)分析,顯示DDAB於極低濃度下即能與高分子形成之穩定複合微粒,其疏水程度明顯高於DTAB與高分子所形成之複合微粒,且經由粒子表面負電大幅地降低,說明DDAB能有效地與高分子主鏈之AAc結合,形成較為緻密之複合微粒。 實驗中以氫核-核磁共振光譜儀(1H-NMR)、廣角度X光繞射(wide-angle X-ray diffraction, WAXD)以及穿透式電子顯微鏡(transmission electronic microscopy, TEM)證實DTAB與接枝高分子結合能形成核-殼(core-shell)結構之高分子微胞,核心部分是由DTAB分子之長碳鏈所組成,殼層部分由親水PEG鏈段所構成以穩定粒子;此外,DTAB分子無法提供足夠之親疏水比例,導致高分子微胞結構較為鬆散。當DDAB與接枝高分子結合後會形成單一粒徑分布、且結構穩定的高分子液胞結構,疏水區域由DDAB之一對碳氫鏈以雙層層狀排列結構所組成,親水PEG鏈段位於疏水區域內外兩側以提高粒子穩定性,實驗亦證實其內部水相能成功地包覆親水性之螢光物質FITC-dextran。zh_TW
dc.description.abstractSUMMARY In this study, the formation mechanism and structural characterization of nanoparticles from complexes between the negatively charged poly(acrylic acid)-graft-monomethoxy poly(ethylene glycol), PAAc-g-mPEG, and single- and double-tail cationic surfactants were investigated thoroughly. Dodecyltrimethylammonium bromide (DTAB) and didodecyldimethylammonium bromide (DDAB) were used as the surfactant components. The results of fluorescence, dynamic light scattering and Zeta-potential experiments illustrate that at low surfactant concentration, compared to the complexes of PAAc-g-mPEG and DTAB, the complexes from PAAc-g-mPEG and DDAB are capable of forming more stable and compact nonoparticles. Furthermore, from the combined results of 1H-NMR and wide-angle X-ray diffraction (WXRD), it is verified that the PAAc-g-mPEG/DTAB complexes undergoes self-assembling into micelle-like aggregates with hydrophobic cores from neutralized anionic AAc residues of the copolymer and cationic DTAB and hydrophilic shells from mPEG segments. Interestingly, distinct from micelle-like aggregates formed by PAAc-g-mPEG/DTAB complexes, the vesicle-like nanoparticles from the PAAc-g-mPEG/DDAB complexes exhibit closed and hydrophobic bilayer regions constructed from neutralized AAc units of the copolymer and DDAB. These bilayer regions are surrounded by hydrophilic mPEG segments. In addition, the vesicle-like nanoparticles can encapsulate the water-soluble fluorescein isothiocyanate, FITC-dextrans into their interior aqueous compartments, which display potential applications in drug delivery.en_US
dc.description.tableofcontents目錄 第一章、緒論 ………………………………………………………1 1-1 前言 ……………………………………………………………1 1-2 研究動機及實驗簡述 …………………………………………1 第二章、文獻回顧 …………………………………………………2 2-1 雙性高分子簡介 ………………………………………………2 2-1-1 雙性高分子定義 ……………………………………………2 2-1-2 雙性高分子微相分離之型態 ………………………………3 2-2 界面活性劑.……………………………………………………4 2-2-1 界面活性劑之組成 …………………………………………4 2-2-2 界面活性劑之聚集 …………………………………………4 2-2-3 界面活性劑之聚集型態 ……………………………………4 2-3 高分子與帶相反電荷界面活性劑之聚集 ……………………6 2-3-1 高分子微胞 …………………………………………………7 2-3-1-1 高分子微胞之結構與應用 ………………………………9 2-3-2 高分子液胞 ………………………………………………10 2-3-2-1 高分子液胞之結構與應用………………………………11 2-3-2-2 液胞之相轉移……………………………………………12 2-3-2-3 液胞之種類………………………………………………13 2-4 接枝高分子之簡介 …………………………………………14 2-4-1 聚乙二醇之性質……………………………………………14 2-4-2 聚丙烯酸之性質 …………………………………………15 第三章、實驗………………………………………………………16 3-1 實驗藥品 …………………………………………………… 16 3-2 實驗儀器………………………………………………………17 3-3 實驗方法………………………………………………………18 3-3-1 接枝高分子之製備 ……………………………………… 18 3-3-1-1 Poly (NAS) 之合成 ……………………………………18 3-3-1-2 接枝側鏈高分子 mPEG-NH2 之製備方式 …………… 18 3-3-1-3 mPEG 接枝於高分子主鏈之製備 ………………………19 3-3-1-4 NAS 共聚合單體之水解反應……………………………20 3-3-2 接枝高分子組成之定量……………………………………20 3-3-3 高分子/界面活性劑複合微粒之製備 ……………………21 3-3-3-1 Tris-Buffer的配製 ……………………………………21 3-3-3-2 陽離子型界面活性劑與高分子之混合系統……………21 3-3-4 高分子及其複合物之結構鑑定……………………………22 3-3-4-1 電位滴定儀 (potentiometric titration) …………22 3-3-4-2 螢光物質 N-Phenyl-2-Naphthylamine (2-AN)………23 3-3-4-3 高分子複合微粒之粒徑及表面電位測定………………23 3-3-4-4 穿透式電子顯微鏡………………………………………24 3-3-4-5 核磁共振氫譜儀…………………………………………24 3-3-4-6 廣角X光繞射實驗 (WAXD) ……………………………24 3-3-4-7 FITC-dextran 之包覆實驗 ……………………………25 第四章、結果與討論………………………………………………27 4-1 接枝高分子PAAc-g-mPEG 之組成鑑定………………………27 4-2 測定高分子PAAc-g-mPEG於不同pH值之解離程度 …………28 4-3 陽離子型界面活性劑與接枝高分子之CAC測量 ……………30 4-4 陽離子型界面活性劑與接枝高分子形成複合微粒之粒徑…32 4-5 陽離子型界面活性劑與接枝高分子混合系統之界面電位分析……………………………………………………………………35 4-6 離子強度對接枝高分子/DTAB、DDAB之複合微粒影響 ……36 4-7 陽離子型界面活性劑與高分子所形成奈米複合微粒之型態……………………………………………………………………39 4-8 陽離子型界面活性劑與接枝高分子混合系統之1H-NMR分析……………………………………………………………………40 4-8-1 界面活性劑之1H-NMR光譜分析……………………………40 4-8-2 接枝高分子/界面活性劑之1H-NMR分析 …………………43 4-9 廣角度X光繞射 ………………………………………………48 4-9-1 DTAB與DDAB界面活性劑之WAXD分析………………………49 4-9-2 高分子與高分子/界面活性劑混合系統之WAXD分析 ……50 4-9-3 接枝高分子/DTAB、DDAB於Z=1形成之複合微粒變溫……53 4-10 水溶性螢光物質包覆實驗 …………………………………56 第五章、結論………………………………………………………58 參考文獻……………………………………………………………59zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0808200810525100en_US
dc.subjectpolyelectrolyte-surfactant complexesen_US
dc.subject帶電高分子-界面活性劑之複合微粒zh_TW
dc.subjectmicellesen_US
dc.subjectvesiclesen_US
dc.subject微胞zh_TW
dc.subject液胞zh_TW
dc.title利用陽離子型界面活性劑與PAAc-g-mPEG接枝高分子形成奈米複合微粒及其結構探討zh_TW
dc.titleStructural characterization of nanoparticles from supramolecular assembling of poly(acrylic acid) -graft-poly(ethylene glycol) and cationic surfactantsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.