Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3671
標題: 以電漿輔助化學氣相沉積法製備TiO2/MCM-41觸媒薄膜之光催化反應研究
Photocatalytic reaction of TiO2/MCM-41 films prepared by Plasma Enhanced chemical vapor deposition method
作者: 劉力禎
Liu, Li-Jhen
關鍵字: Plasma Enhanced Chemical Vapor Deposition;電漿輔助化學氣相沉積;MCM-41;titanium dioxide;photocatalysis;二氧化鈦;光催化
出版社: 化學工程學系所
引用: 1.劉國棟,“VOC管制趨勢展望”,工業污染防治,1993. 48期: p.15-31. 2.B. Birgitta, I. Johansson and T. Lindvall, “Volatile organic compounds from used building materials in a simulated chamber study,” Environmental International, 1989. 15: p.383-387. 3.B. A. Tichenor, “Measurement of organic compound emissions using small test chambers,” Environmental International, 1989. 15: p.389-396. 4.W. G. Tucker, “Emission of organic substances from indoor surface materials,” Environmental International, 1991. 17: p.357-363. 5.C. Lyons, C. Turchi and D. Gratson, “Solving widespread low-concentration VOC air pollution problem:Gas-phase photocatalytic oxidation answers the needs of many small business,” The 88th Annual Meeting an Exhibition of Air & Waste Management Association, 1995. 95-TP60P.06, p.1-11. 6.M. Schiavello, Heterogeneous Photocatalysis[M], London:Willey, 1997. p.103-117. 7.A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,”Nature, 1972. 238: p.37-38. 8.S. B. Kim and S. C. Hong, “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst,”Applied Catalysis B:Environmental, 2002. 35: p.305-315. 9.H. Szymanowski, A. Sobczyk, M. Gazicki-Lipman, W. Jakubowski and L. Klimek, “Plasma enhanced CVD deposition of titanium oxide for biomedical applications,”Surface & Coatings Technology, 2005. 200: p.1036-1040. 10.蕭麗君,新吸附材料用於空氣中揮發性物質的萃取方法開發,碩士論文,國立中央大學化學學系,2005. 11.J. W. McBain, “The Sorption of Gases and Vapours by Solids, “ Rutledge and Sons, London, 1932. 12.S. Bhatia, “Zeolit catalysis principles and application,” CRC press, Florida, 1990. p.7-17. 13.D. H. Everett, IUPAC Manual of Symbols and Terminology for physicochemical quantities and units, Appendix 2, Part 1, Collid and Surface Chemistry, Pure Applied Chemical, 1972. 31:p.584-594. 14.C. T. Kresge, M, E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism ,” Nature, 1992. 359: p.710-712. 15.V. Gusev, MCM-41, Molecule of the Month, 1998. http://www.chm.bris.ac.uk/motm/mcm41/mcm41.htm. 16.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmit, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” Journal of American Chemical Society, 1992. 114:p.10834-10843. 17.A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky and B. F. Chmelka, “Cooperative organization of inorganic-surfactant and biomimetic assemblies,” Science, 1995. 267(5201):p.1138-1143. 18.郭朝皓,金屬矽酸鹽觸媒於奈米碳管之應用,碩士論文,國立中興大學化學工程學系,2003. 19.黃建智,奈米二氧化鈦光觸媒之電漿改質及其對VOCs分解反應機制之研究,碩士論文,文化大學材料科學與奈米科技研究所,2004. 20.M. H. Suhail, G. M. Rao and S. Mohan, “Dc reactive magnetron sputtering of titanium-structure and optical characterization of TiO2 films,” Journal of Applied Physics, 1992. 71: p.1421-1427. 21.Y. Takahashi, “Rutile Growth at the Surface of TiO2 Films Deposited by Vapor-phase Decomposition of Isopropyl Titanate,” Journal of American Chemical Society, 1985. 81: p.3117-3125. 22.University of Colorado, ”Mineral Structure,” http://ruby.colorado.edu/~smyth/min/minerals.html. 23.黃相舜,電漿化學氣相沉積二氧化鈦薄膜之特性研究,碩士論文,國立成功大學材料科學及工程學系,2000. 24.E. M. Levin and H. F. McMurdie, Phase diagrams for Ceramists, The American Ceramic Society, inc., Columbus, OH, 1975. 76: p.4150-4999. 25.S. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” Journal of Molecular Catalysis A:Chemical, 2000. 161: p.205-212. 26.A. Fujishima, T. N, Rao and D. A. Tryk, “Titanium Dioxide Photocatalsis,” Journal of Photochemistry and Photobiology C:Photochemistry Review, 2000. 1: p.1-21. 27.Q. N. Gu, M. Zhuo, J. L. Chen and L. W. Huang, “Photocatalytic degradation of organic chlorides on TiO2,” Journal of Zhejiang University of Technology, 2004. 32(5):p.589-593. 28.丁士文,王利勇,丁宇,張美紅,王振興,“微波加熱反應製備奈米TiO2混晶及其光催化性能”,應用化學,2006. 第23卷,第6期,p.651-654. 29.燕青芝,宿新泰,周铯平,葛昌純,“Sol-gel自蔓燃法控制合成二氧化鈦奈米粉體及性能”,物理化學學報,2005. 第21卷,第1期, p.57-62. 30.李凱博,以電漿激發化學氣相沉積法製備二氧化鈦觸媒薄膜之甲醇光催化反應研究,碩士論文,國立中興大學化學工程學系,2006. 31.M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, “Environmental application of semiconductor photocatalysis,” Chemical Reviews, 1995. 20: p.69-95. 32.I. Langmuir, “The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths,” Phys. Rev. , 1929. 33(6): p.954. 33.A. Grill, Cold Plasma in Materials Fabrication, IEEE PRESS, 1994. p.1-23. 34.南台科技大學機械系,精密製造學-薄膜沉積,第八章,教育部高工進修網站, http://elearning.stut.edu.tw/m_facture/machine.htm. 35.林士淵,電漿輔助化學氣相沉積二氧化矽薄膜之內應力分析,碩士論文,國立成功大學機械工程學系,2000. 36.W. G. Lee, S. L. Woo, J. C. Kim, S. H. Choi and K. H. Oh, “Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition,”Thin Solid Films, 1994. 237(1-2):p.105-111. 37.Y. H. Lee, “A role of energetic ions in RF-biased PECVD of TiO2,” Vacuum, 1999. 51(4):p.503-509. 38.G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin and G. A. Rizzi, “PECVD of amorphous TiO2 thin films:effect of growth temperature and plasma gas composition,” Thin Soild Films, 2000. 371:p.126-131. 39.K. H. Ahn, Y. B. Park and D. W. Park, “Kinetic and mechanistic study on the chemical vapor deposition of titanium dioxide thin films by in situ FT-IR using TTIP,” Surface & Coatings Technology, 2003. 171:p.198-204. 40.S. S. Huang and J. S. Chen, “Comparison of the characteristics of TiO2 films prepared by low-pressure and plasma-enhanced chemical vapor deposition,” Journal of Materials Science:Materials in Electronics, 2002. 13:p.77-81. 41.C. Guillard, D. Debayle, A. Gagnaire and H. Jaffrezic, “Physical properties and photocatalytic efficiencies of TiO2 films prepared by PECVD and sol-gel methods,” Materials Research Bulletin, 2004. 39:p.1445-1458. 42.D. F. Ollis, E. Pelizzetti and N. Serpone, “Destructure of water contaminants,” Environmental Science & Technology, 1991. 25(9):p.1523-1529. 43.L. A. Dibble, “The Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near Ultraviolet Illuminated Titanum Dioxide,” Ph. D. Thesis, Arizona State University, 1989. 44.G. B. Raupp and C. T. Junio, “Photocatalytic Oxidation of Oxygenated Air Toxics,” Applied Surface Science, 1993. 72(4):p.321-327. 45.L. T. Hyoung, J. S. Mun, K. S. Done and G. Janos, “Photocatalytic decomposition of NO by TiO2 particles,” Journal of Photochemistry and Photobiology A:Chemistry, 2000. 134(3):p.209-217. 46.C. H. Hung, C. S. Wu and C. S. Yuan, “ Photocatalytic Degradation of Benzene via TiO2 and Metal-Doped TiO2,” Air and Waste Management Association 93rd Annual Meeting and Exhibition, Salt Lake City, Utah, USA, 2000. June 18-22. 47.C. S. Zalazar, C. A. Martin and A. E. Cassano, “Photocatalytic intrinsic reaction kinetic. II:Effects of oxygen concentration on the kinetics of the photocatalytic degradation of dichloroacetic acid,” Chemical Engineering Science, 2005. 60(15):p.4311-4322. 48.A. A. Bonapasta and F. Filippone,”Photocatalytic reduction of oxygen molecules at the (100) TiO2 anatase surface,” Surface Science, 2005. 577(1):p.59-68. 49.K. Okamoto, Y. Yamamoto, H. Tanaka and A. Itaya, “Kinetics of Heterogeneous Photocatalytic Decomposition of Phenol over Anatase TiO2 Powder,” Bulletin of the Chemical Society of Japan, 1985. 58:p.2023-2028. 50.G. Munuera, V. R. Arnau and A. Saucedo, “Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surface. Part1-Role of hydroxyl groups in photo-adsorption,” Journal of Chemical Sociey, Faraday Trans. I, 1979. 755:p.736-747. 51.T. N. Obee and R. T. Brown, “TiO2 Photocatalysis for Indoor Air Applications:Effect of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde、Toluene and 1,3-Butadiene,” Environ. Science Technology, 1995. 29:p.1223-1231. 52.工業局,“石化工業因應揮發性有機物管制規範之對策研究”,經濟部工業局專案研究計劃,1994. 53.化學大辭典,高立圖書館公司,2004. 54.甲醇,維基百科,http://zh.wikipedia.org/w/index.php?title=%E7%94%B2%E9%86%87&variant=zh-tw. 55.勞工安全衛生研究所,http://www.iosh.gov.tw/data/msds/msds0086.pdf. 56.張福財,含氧化鈦觸媒的製備性質鑑定及其對分解含氯苯環污染物質之光催化性質探討,碩士論文,國立台灣大學化學學系,1996. 57.林立桓,二氧化鈦修飾之含鉻鈦MCM-41分子篩之製備、結構特性與催化性質,碩士論文,國立中央大學化學學系,2002. 58.高聖倉,塗佈二氧化鈦在二氧化矽及中孔洞材料作為五氧化二釩之擔體之氧化性觸媒研究,碩士論文,國立中央大學化學學系,2003. 59.H. M. Lin, S. T. Kao, K. M. Lin, J. R. Chang and S. G. Shyu, “Grafting TiO2 on MCM-41 as a TiO2 support for vanadia for catalytic oxidation of ethanol-EXAFS and XANES analyses of vanadium,” Journal of catalysis, 2004. 224:p.156-163. 60.H. S. Xu, F. Chen, H. L. Ma, Z. L. Bo and J. L. Zhang, “Effect of Solution in Silylanization on the Adsorbability of TiO2/Fe-MCM-41 Composite Photocatalyst,” Journal of East China University of Science and Technology, 2005. 31(3):p.334-338. 61.S. Anandan, “Photocatalytic effects of titania supported nanoporous MCM-41 on degradation of methyl orange in the presence of electron acceptors,” Dyes and Pigments, 2008. 76:p.535-541. 62.Q. Cai, W. Y. Zou, Z. S. Luo, Q. X. Wen, W. Q. Pang and F. Z. Cui, “Rectifying and photovoltaic effects observed in mesoporous MCM-41 silica film on silicon,” Materials Letters, 2003. 58: p.1-4. 63.Q. Cai, W. Y. Lin, F. S. Xiao, W. Q. Pang, X. H. Chen and B. S. Zou, “The preparation of highly ordered MCM-41 with extremely low surfactant concentration,” Microporous and Mesoporous Materials, 1999. 32: p.1-15. 64.H. Yang, N. Coombs, I. Sokolov and G. A. Ozin, “Free-standing and oriented mesoporous silica films grown at the air–water interface,” Nature, 1995. 381:p.589-592. 65.侯強郭,“金紅石型奈米二氧化鈦製備中的若干影響因素”,北京化工大學學報,2004. 第31卷,第4期,p.16-18. 66.L. J. Shi, R.Yang and M. Li, “Nanocrystalline TiO2:Crystal Structure Controlled Synthesis via Low Temperature Hydrolysis Method and Surface Texture,” Chinese Journal of Inorganic Chemistry, 2006. 22(7):p.1196-1202. 67.周宏邦,濺鍍二氧化鈦與氮摻雜二氧化鈦薄膜之結構與光觸媒性質研究,碩士論文,國立東華大學材料科學與工程學系,2004. 68.J. M. Mwabora, T. Lindgren, E. Avendan, T. F. Jaramillo, J. Lu, S. E. Lindquist and C. G. Granqvist, “Structure composition, and morphology of photoelectrochemically active TiO2-x-Nx thin films deposited by reactive DC magnetron sputtering,” Journal Physical Chemical, 2004. B, 108:p.20193-20198. 69.張青紅,高濂,郭景坤,“四氯化鈦水解法製備二氧化鈦奈米晶的影響因素”,無機材料學報,2000. 第15卷,第6期,p.992-998. 70.L. Q. Jing, X. J. Sun, W. M. Cai, Z. L. Xu, Y. G. Du and H. G. Fu, “The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity,”Journal of Physics and Chemistry of Solids, 2003. 64(4):p.615-623. 71.R. M. Patrick, J. S. Laura, K. Sandeep and R. F. Ellen, “Investigation of PECVD TiO2-Si (100) interface,” Appiled Surface Science, 2004. 233:p.69-79. 72.D. F. Oills, “Contaminant degradation in water Heterogeneous photocatalysis degrades halogenated hydrocarbon contaminants,” Environment Science Technology, 1985. 19(6): p.480-481. 73.R. I. Bickliy, T. Gonzalez-Carreno and J. S. Lees, “A structural investigation of titanium dioxide photocatalysts,” Journal of Solid State Chemistry, 1991. 92(1): p.178-190. 74.N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors,” Journal of Photochemistry and Photobiology A:Chemistry, 1995. 85(3):p.247-255.
摘要: 
本研究以四乙基氧矽(TEOS)溶液為矽酸鹽的來源,溴化十六烷基三甲基銨鹽(CTABr)為界面活性劑,在氨水的環境下,製備MCM-41觸媒薄膜於矽晶片上。隨後再以四異丙基鈦酸酯(TTIP)為前驅物,利用電漿輔助化學氣相沉積(PECVD)法將二氧化鈦觸媒薄膜製備於前述擔持MCM-41之鍍膜基材上。在不同的退火時間、退火溫度、基板溫度、氧氣流量及電漿功率等參數下,生成之TiO2/MCM-41觸媒薄膜,以X光粉末繞射儀(XRD)、場發射掃描式電子顯微鏡(FESEM)及化學分析電子能譜儀(ESCA)等分析觸媒薄膜之表面特性,並以甲醇為反應物,探討TiO2/MCM-41觸媒薄膜之光催化反應。
退火時間2小時、退火溫度700℃、基板溫度500℃、氧氣流量70 sccm及電漿功率100 W時,有最佳的銳鈦礦晶相二氧化鈦生成。在不同的基板溫度與氧氣流量下,出現明顯二氧化鈦之銳鈦礦晶相與金紅石晶相混晶結構。以Scherrer equation估算二氧化鈦之顆粒粒徑介於30.34 nm-59.96 nm之間。初始濃度為116.79 mg/L之甲醇,在濕度2.94 mg/L,反應溫度75℃,不同光源(紫外光254 nm與365 nm及日光燈)條件下,經過60分鐘照光反應。以最佳二氧化鈦之銳鈦礦晶相在紫外光照射下,所得之甲醇轉化率最佳,分別為48.90%與48.18%;而在日光燈照射下,則以銳鈦礦晶相與金紅石晶相兩種二氧化鈦混晶結構有較佳的甲醇轉化率(40.03%),且皆符合L-H model之一階動力模式。

This investigation was prepared MCM-41 catalyst films on silicon wafer in ammonia media, using tetraethyl orthosilicate (TEOS) as a precursor and cetyltrimethylammonium bromide (CTABr) as a surfactant. Afterward, titanium dioxide was coated on the surface of MCM-41 wafer by Plasma Enhanced Chemical Vapor Deposition (PECVD) method, using titanium (IV) isopropoxide (TTIP) as a precursor. The preparative parameters in this study include annealing time, annealing temperatures, substrate temperatures, oxygen flow rate and plasma power. The prepared catalysts were characterized by X-ray powder diffraction patterns (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Electron Spectroscopy for Chemical Analysis (ESCA). Moreover, the activity of photocatalyst was established with the removal efficiency of methanol vapor.
Optimum the Anatase phase TiO2 prepared by PECVD method was obtained under annealing at 700℃ for 2 hr, substrate temperature at 500℃, 70 sccm of oxygen flow rate, and 100 W of plasma power. In addition, the Anatase-Rutile mixed phase has been synthesized under different substrate temperatures and oxygen flow rate. The particle sizes of titanium dioxide were between 30.34 nm and 59.96 nm by the calculation of Scherrer equation. The best conversion of methanol with UV-light (wavelength 254 nm and 365 nm) were respectively 48.90% and 48.18% by using the optimum anatase phase TiO2. While under fluorescent light irradiation, the best photo-activity was Anatase-Rutile mixed phase TiO2 with conversion of 40.03%. Furthermore, the photocatalytic degradation obeyed pseudo-first order kinetics of Langmuir-Hinshelwood equation.
URI: http://hdl.handle.net/11455/3671
其他識別: U0005-0907200810405500
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.