Please use this identifier to cite or link to this item:
標題: 發散法合成聚亞醯胺樹枝狀高分子
Synthesis of Dendritic PI Nanomers via Divergent Scheme
作者: 蔡如伶
Tasi, Ru-Ling
關鍵字: Dendrimers;樹枝狀高分子;Divergent;Oxidation;Hydrogenation;Imidization;發散法;氧化;氫化;亞醯胺化
出版社: 化學工程學系所
引用: 1.U.Boas, J. B. Christensen and P. M. H. Heegaard. J. Mater. Chem. 2006, 16, 3785-3798. 2.David k. Smith FranÇois Diederichvvol. Topics in Current Chemistry. 2000, 210, 184-224. 3.Peter E. Forehling. dyes and Pigments. 2001, 48, 187-195. 4.Satoshi Shinoda. J Incl Phenom Macrocycl Chem. 2007. 5.Myung-Seok Choi, Takuzo Aida, Tomoko Yamazaki, and Iwao Yamazaki. Chem. Eur. J. 2002, 8, 2667-2678. 6.P.M. Hergenrothera, K.A. Watsona, J. G. Smith Jr, J. W. Connell, R. Yokota. Polymer. 2002, 43, 5077-5093. 7.C. E. SROOG. Prog. Polym. Sci. 1991, 16, 561-694. 8.Jong-Beom Baek, Haihu Qin, Patrick T. Mather, and Loon-Seng Tan. Macromolecules. 2002, 35, 4951-4959. 9.Mohammed h. Kailani and Chong Sook Paik Sung. Macromolecules. 1998, 31, 5771-5778. 10.Kazuhiro Yamanaka, Mitsutoshi Jikei,and Masa-aki Kakimoto. Journal of Photopolymer Science and Technology. 2000, 13, 321-322. 11.薛志彬,九十五學年度國立中興大學化學工程學研究所碩士論文,2007. 12.Jianjun Hao, Mitsutoshi Jikei, and Masa-aki Kakimoto. Macromolecules. 2003, 36, 3519-3528. 13.Jianjun Hao, Mitsutoshi Jikei, Masa-aki Kakimoto. Macromol. Symp. 2003, 199, 233-241. 14.Xiang-Qian Lin, Mitutoshi Jikei, Masa-aki Kakimoto. Macromolecules, 2001, 34, 3146-3154. 15.Jianjun Hao, Mitsutoshi Jikei, and Masa-aki Kakimoto. Macromolecules, 2002, 35, 5372-5381. 16.N. M. Emanual, E. T. Denisov, Z. K. Mazius. Liquid. Plenum Press. 1967, 350. 17.Y. Yoshino, Y. Hayashi, T. Iwahama, S. Sakaguchi, Y. Ishii, J. Org. Chem. 1997, 62, 6810-6813. 18.S.D. Housley, J. A. Turner, in U. S. Pat. Appl. Publ, 2003, 10. 19.Basudeb Saha, James h. Espenson. Journal of Molecular Catalysis A: Chemical, 2007, 27, 1-5. 20.Basudeo saha, James H. Espenson. Journal of Molecular Catalysis A: Chemical, 2004, 207, 121-127. 21.Peter D. Metelski, Victor A. Adamian, and James H. Espenson.Inorg. Chem. 2000, 39, 2434-2439. 22.Basudeb Saha, James h. Espenson. Journal of Molecular Catalysis A: Chemical. 2005, 241, 33-38. 23.J. Hanotier, M. Hanotier-Bridoux, P. De Radzitzky. J. Chem. Soc. 1973, 2, 381-386. 24.J. Hanotier, P. Camerman, M. Hanotier-Bridoux, P. De Radzitzky. J. Chem. Soc. 1972, 2247-2252. 25.S. S. Lande, C. D. Falk, J. K. Kochi. J. Inorg. Nucl. Chem. 1971, 33, 4101-4109. 26.Christopher J. Perry and Zahida Parveen. J. Chem. Soc. 2001, 2,512-521. 27.Harrison. R. M, Feast. W. J. Polym. Mater. Sci. 1997, 77, 162. 28.Kricheldorf, H. R, Bolender, O. Wollheim, T. High Perform. Polym. 1998, 10, 217. 29.Maier, G. Zech, C. Voit, B. Komber, H. Macromol. Chem. Phys.1998, 199, 2655. 30.(a) Yamanaka, K. Jikei, M. Kakimoto, M. Macromolecules. 2000, 33, 1111. (b) Yamanaka, K. Jikei, M. Kakimoto, M. Mocromolecules. 2000, 33, 6937. 31.Kazuhiro Yamanaka, Mitsutoshi Jikei, Masa-aki Kakimoto. Journal of Photopolymer Science and Technology. 2001, 14, 11-16. 32.Mohammed h. Kailani, Chong Sook Paik Sung. Macromolecule., 1998, 31, 5771-5778. 33.Kun XU, James Economy. Macromolecules. 2004, 37, 4146-4155. 34.V. Yu. Orlov, R. S. Begunov, N. Yu. Demidova, A. I. Rusakov. Russian Journal of General Chemistry. 2006, 76, 76-81. 35.M.M. Telkar, J. M. Nadgeri, C. V. Rode, R. V. Chaudhari. Applied Catalysis A: General. 2005, 295, 23-30. 36.Ming-Ju Huang, Jerzy Leszczynski. Journal of Molecular Structure (Theochem). 2002, 592, 105-113. 37.Avelino Corma, Patricia Concepción, Pedro Serna, Angew. chem. Int. Ed. 2007, 46, 7266-7269. 38. Chyi-Ming Leu, Yao-Te Chang, Ching-Fong Shu. Macromolecules 2000, 33, 2855-2861. 39.C. M. Leua , C. F. Shua, C. F. Teng, J. Shieab. Polymer. 2001, 42, 2339-2348. 40.Kazuhoro Yamanaka, Mitsutoshi Jikei, Masa-aki Kakimoto, Macromolecules. 2000, 33, 6937-6944. 41.Jianjun Hao, Mitsutoshi Jikei, Masa-aki Kakimoto. Macromolecules 2003, 36, 3519-3528. 42.Alberto Cincotti, Roberto Orrù, Giacomo Cao. Catalysis Today. 1999, 52, 331-347. 43.David Raju Burri, Ki-Won Jun, Jin S. Yoo, Chul Wee Lee, Sang-Eon Park. Catalysis Letters. 2002, 81, 3-4. 44.Heng-Shan Wanga, Ying-Chun Wang, Ying-Ming Pana, Shu-Lin Zhaoa, Zhen-Feng Chena. Tetrahedron Letters. 2008, 49, 2634-2637.

In this research, we developed a divergent scheme of synthesizing up to second generations of polyimide dendrimers (PI Dendrimers) based on one common ABB' Intermediate (2) as core through repetitive reactions of hydrogenation and imidization using low-cost reagents.
The core of our overall scheme relied upon the synthesis of 3-(2,4-dinitrophenoxy) phthalic anhydride (2) .(2) was obtained by the autoxidation of 2,4-dinitrophenyl-3,4-dimethyl phenyl ether (1), which was readily accessible from 3,4-dimethyl phenol and 1-Chloro- 2,4-dinitrophenol by a base-initiated replacement reaction. The yield of autoxidation of (2) has been enhanced to 84~87% yield in this study by carefully adjusting cobalt acetate/manganes acetate/sodium bormide catalysts ratio in acetic acid. It was found that the optimal condition is to carry out the autoxidation at 140 ℃ with the concentration ration between Co(OAc)2/ Mn(OAc)2 /NaBr of 0.65:0.65:0.50 (wt%) in 9.09 % weight concentration.
Imidization (2) of was carried out with aniline in the first step followed by hydrogenation to form the tri-imide-D0 bearing di-amine-D0 can then go through the same sequence of di-imidization with two moles of (2) and then hydrogenation of the tetra-nitro-D1, and this resulted in Penta-imide bearing tetra-amine-D1 (7). Finally, (7) went through the same sequences of imidization and hydrogenation to form the nonyl-imide-D2 bearing octa-amine-D2.
Although this straight forward divergent synthesis could go on repeatedly in theory to form high PI dendrimers, we found that the hydrogenation of nitro-groups became sluggish in ethyl acetate solution as the generations of PI dendrimers grew. It was found that 1,4-dioxane on particularly a good solvent to use in hydrogenation of high generations of PI polynitro-dendrimers because of its solvating power, which allowed the hydrogenation to be done at low-temperature without other complications.
All PI dendrimers synthesized show their melting points between 250℃-290℃and could be dissolved readily in solvents such as NMP, THF and CHCl3.The thermal characteristics and potential utilities of the dendrimers are still being investigate.
其他識別: U0005-1108200817293100
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.