Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36767
標題: 胡麻抗氧化物質之遺傳變異與栽培及加工處理之影響
Genetic variation and effect of cultured and process for antioxidants in sesame
作者: 黃詵富
Huang, Shen-Fu
關鍵字: sesame;胡麻;antioxidant;genetic variation;development stage;process;抗氧化物質;遺傳變異;生育期;加工處理
出版社: 農藝學系所
引用: 尹佩玉、陸懋茲。1994。黑芝麻色素理化性質研究。食品科學 2:15-17。 王岳光、劉廣田、王建設、李保云。1997。不同組合方式對小麥性狀遺傳變異表現的影響: I. 籽粒產量和品質性狀的遺傳變異。中國農業大學學報 2(1):19-24。 任歡魚、韋異、朱海洋。2005。維生素在皮膚護理中的應用。日用化學品科學 1:40-42。 李文輝。1987。胡麻品種改良。雜作簡報 29:393-397。 李文輝。1996。胡麻新品種台南1號之育成。台南區農業改良場研究彙報 33:1-14。 李文輝、黃榮杰。1986。胡麻育種。雜作簡報 28:270-276。 李怡嵐、喬珊珊、張明月、周蕾、姜淑青、李國星。2004。β-C + VE 提高放化療後小鼠免疫功能的實驗研究。中國腫瘤臨床 31(17):968-982。 李政緯。1999。利用胡麻型態特徵及DNA多型性分析胡麻之遺傳變異性。碩士論文。台中。國立中興大學。 林曉明、唐儀。1994。維生素E與人體免疫功能關係的研究。北京醫科大學學報 26(4):270。 周旭章、魏開華、陳朝輝、謝凱、朱建軍。1997。以黑芝麻中提取黑色素的研究。林產化工通訊 4:16-19。 周春陽、張翔、蔡春燕、唐忠、崔成虎、陳守云。2003。硒和維生素E對實驗性高脂血症大鼠血脂及肝腎功能的影響。川北醫學院學報 18(2):1-3。 周建新、孫明、汪海峰、閆雪、姚明蘭、朱聰、王麗君、周建昌、劉寶良。2004。芝麻素的應用性能研究。食品科學 25(1)102-105。 胡澤寬。1983。胡麻在不同季節之產量與農藝性之變異及其相關關係。農林學報 32 (2):89-98。 胡澤寬。1985。胡麻之遺傳育種行為研究 II. 產量構成要素之完全互交分析。中華農學會報 131:24-34。 馬萱鉞、馮彪、甘振威、隋志仁、王志剛、蘇彥斌、劉敏。1994。維生素和蛋氨酸對染塵小鼠脾細胞轉化及肝、肺脂質過氧化的影響。白求恩醫科大學學報 20(6):555-556。 陳彥球、楊燕、崔永萍、張喜忠。2001。抗氧化維生素對大鼠脂代謝及清道夫受體表達的影響。營養學報 23(3):254-258。 張名位、孫玲、池建傳、賴來展、王志堅。1998。黑米、黑大豆、黑芝麻中天然色素性質的比較研究。中國糧油學報 13(2):6-9。 黃鳳蘭、鄭偉、胡國富、李心文、胡寶忠。2004。胡麻低亞麻酸變異材料的定性鑑定及半粒法應用技術。中國油料作物學報 26(4):82-85。 黃麗如、李瑞興。2006。台灣大豆品種品質性狀之變異及其相關研究。中華農學會報 7(1):12-31。 曾志正。2001。芝麻子實在生物技術上的應用。科學發展月刊 29(2):653-657。 歐陽青、蔡文啟。2003。天然維生素E的生物合成途徑。植物生理學通訊 39(5):501-507。 鮑揚。2004。維生素E與營養。腸外與腸內營養 11(1):51-57。 顏銘宏。2005。天然抗氧化劑之作用機轉。藥用植物資源之開發與利用。P.13-20。行政院農業委員會農業試驗所。台中。 顏國欽、徐錫樑、林景修。1986。不同芝麻品種的油脂和蛋白質組成份之研究。農林學報 35(2):177-185。 龍盛京、農冠榮、馬文力。1999。黑芝麻色素和多糖對全血化學發光和活性氧的抑制作用。食品工業科技 20(2):7-10。 簡元才、李長纓、杜度岑。1999。甘藍引種材料主成分分析。北方園藝 3:11-12。 蘇正德。1993。維生素E快速檢測法及其在食品應用之研究。藥物食品分析 1(1):61-70。 秋元健吾、清水昌。1996。ゴマ成分セサミンの多樣性な生理活性。New Food Industry 38:62-70。 大澤俊彥。1996。ゴマ子實に含まれる配醣體の研究。食の科學 26-32。 粟山健一、土屋欣也、無類井建夫。1993。高速液體クロマトグラフィ一によるゴマ子實リグナン配糖體の分析。日本農藝化學會誌 67:1693-1700。 粟山健一、無類井建夫。1995。ゴマリグナン配糖體のヒドロキシカル消去活性。日本農藝化學會誌 69:703-705。 粟山健一、土屋欣也、無類井建夫。1995。ゴマ發芽に伴う新規リグナン配糖體の生成。日本農藝化學會誌 69:685-693。 菅野道廣。1996。ゴマリグナンの肝機能增強作用。食の科學 39-43。 並木滿夫。1996。ゴマの機能性研究の新展開。食の科學 18-25。 並木滿夫、小林貞作。1989。ゴマの科學。朝倉書局。日本。 福田靖子、大澤俊彥、川岸舜朗、並木滿夫。1988。国產ゴマ品種間のセサモリンおよびリグナン抗酸化性物質の比較。Nippon Shokuhin Kogyo Gakkaishi 35:483-486。 福田靖子、並木滿夫。1988。ゴマの食品科學。日本食品科學工學會誌 35:552-562。 山下かなヘ。1996。ゴマの老化抑制效果。食の科學 33-38。 安本知子、杉浦誠、小卷克巳、勝田真澄。2005。ゴマ(sesamum indicum L.)の成熟に伴う子實中のセサミンとセサモリン含有量の変動と成分特性の評価。日作紀 74:165-171。 Abnou-Gharbia, H. A., F. Shahidi, A. A. Y. Shehata, and M. M. Youseef. 1997. Effects of processing on oxidative stability of sesame oil extracted from intact and dehulled seeds. JAOCS 74:215-221. Ashri, A. 1998. Sesame breeding. Plant Breed. Rev. 16:179-228. Beroza, M., E. R. Branch, and M. L. Kinman. 1955. Sesamin, sesamolin, and sesamol content of the oil of sesame seed as affected by strain, location grwn, ageing, and frost damage. JAOCS 32:348-350. Charron, C. S., F. L. Allen, R. D. Johnson, V. R. Pantalone, and C. E. Sams. 2005. Correlations of oil and protein with isoflavone concentration in soybean [Glycine max. (L.) Merr.]. J. Agric. Food Chem. 53:7128-7135. Chu, M. J. K. A., L. B. Davin, and N. G. Lewis. 1998. Biosynthesis of antioxidant lignans in sesamum indicum seeds. Phytochem. 47:583-591. Clup, T. W. 1959. Inheritance and association of oil and protein content and seed coat type in sesame, Sesamum indicum L. Genetics 44:497-509. Conte, L. S., O. Leoni, S. Palmieri, P. Capella, and G. Lercker. 1989. Half-seed analysis: rapid chromatographic determina- tion of the main fatty acids of sunflower seed. Plant Breeding 102:158-165. Day, J. S. 2000. Development and maturation of sesame seeds and capsules. Field Crop Res. 67:1-9. Durate, A. P., S. C. Mason, D. S. Jackson, and J. de C. Kiehl. 2005. Grain quality of Brazilian maize genotypes as influenced by nitrogen level. Crop Sci. 45:1958-1964. Falconer, D. S. 1981. Introduction to quantitative genetics. 2nd. Ed. Longan, New York. Fukuda, Y., T. Osawa, M. Namiki, and T. Ozaki. 1985. Studies on antioxidative substances in sesame seed. Agric. Biol. Chem. 49:301-306. Fukuda, Y., M. Nagata, T. Osawa, and M. Namiki. 1986. Contribution of lignan analoges to antioxidative activity of refined unroasted sesame seed oil. JAOCS. 63:1027-1031. Gale, J. S. and L. J. Eaves. 1972. Variation in wild populations of Papaver dubium. V. The application of facter analysis to the study of variation. Heredity 29(2):135-149. Goffman, F. D. and H. C. Becker. 2001. Diallel analysis for tocopherol contents in seeds of rapseed. Crop Sci. 41:1072-1079. Harrson, S. A., H. R. Boerma, and D. A. Ashley. 1981. Hereitibility of canopy-apparent photosynthesis and its relationship to seed yield in soybean. Crop Sci. 21:222-226. Hayman, B. I. 1954a. The analysis of variance of diallel tables. Biometrics. 10:235-244. Hayman, B. I. 1954b. The theory and analysis of diallel crosses. Genetics 39:789-809. Hirose, N., T. Inoue, K. Nishihara, M. Sugano, K. Akimoto, S. Shimizu, and H. Yamada. 1991. Inhibition of cholesterol absorption and synthesis in rats by sesamin. J. Lipid Res. 32:629-638. Jiao, Y., L. B. Davin, and N. G. Lewis. 1998. Furanofuran lignan metabolism as a function of seed maturation in sesamum indicum:methylenedioxy brige formation. Phytochem. 49:387-394. Jink, J. L. 1954. The analyses of continuous variation in a diallel cross of Nicotinan rustica varieties. Genetics 39:767-685. Johnson, L. P. V. and R. Aksel. 1959. Inheritance of yield capacity in a fifteen parent diallel cross of barley. Canad. J. Genet. Cytol. 6(1):208-265. Kamal-Eldin, A. and L. Å. Appelqvist. 1994. Variations in the composition of sterols, tocopherols and lignans in seed oils from four sesame species. JAOCS 71(2):149-156. Kamal-Eldin, A., D. Pettersson, and L. Å. Appelqvist. 1995. Sesamin ( a compound from sesame oil ) increases tocopherol levels in rats fed ad libitum. Lipid 30(6):499-505. Kamal-Eldin, A., G. Yousif, and L. Å. Appelqvist. 1991. Thin-layer chromatographic separations of seed oil unsaponifiables from four sesamum species. JAOCS 68(11):844-847. Kang, C. W. 1985. Studies on flowering, capsule breeding habit and maturity of different plants types in sesame (Sesamum indicum L.). Ph. D. Thesis, Korea university, Seoul, South Korea. Kang, M. H., M. Naito, N. Tsujihara, and T. Osawa. 1998. Sesamolin inhibits lipid peroxidation in rat liver and kidney. J. Nutr. 128:1018-1022. Kang, M. H., Y. Kawai, M. Naito, and T. Osawa. 1999. Dietary defatted sesame flour decreases susceptibility to oxidative stress in hypercholesterolemic rabbits. J. Nutr. 129:1885-1890. Kato, M. J., A. Chu, L. B. Davin, and N. G. Lewis. 1998. Biosynthesis of antioxidant lignans in sesamum indium seeds. Phytochem. 47(4):583-591. Khidir, M O. and A. H. Khattab. 1972. Oil, protein and dry matter development in sesame seed. Experimental Agriculture 8:61-65. Kitabayashi, H., A. Ujihara, T. Hirose, and M. Minami. 1994. Varietal differences and heritability for rutin content in common buckwheat, Fagopyrum esculentum Moench. Breed. Sci. 45:75-79. Kline, K., W. Yu, and B. G. Sanders. 2004. Vitamin E and breast cancer. J. Nutr. 134:3485-3462. Mather, K. and J. L. Jinks. 1971. Biometrical genetics. P382. Cornell Universith Press, Ithaca. Mohamed, H. M. A. and I. I. Awatif. 1998. The use of sesame oil unsaponifiable matter as a natural antioxidant. Food Chem. 62:269-276. Mosjidis, J. A. and D. M. Yermanos. 1985. Plant position effect of seed weight, oil content, and oil composition in sesame. Euphytica 34:193-199. Murty, D. S. and M. Hashim. 1973. Inheritance of oil and protein content in a diallel cross of sesame (Sesamum indicum L.). Can. J. Genet. Cytol. 15:177-184. Nakasato, S., H. Hoshida, T. Maruyama, T. Ujiie, Y. Ohta, Y. Kawaguchi, K. Shimo, S. Watanabe, S. Wada, H. Hirayama, and M. Sawada. 1987. High-performance liquid chromatogr- aphic determination of tocopherols in vegetable oils and fats. Japan Oil Chem. Soc. 36:506-514. Namiki, M. 1995. The chemistry and physiological functions of sesame. Food Rev. Int. 11(2):281-329. Osawa, T. 1994. Plant antioxidants: protective role against oxygen radical species. Cosmetics and Toiletries 109:77-81. Ruiz, D. J. Egea, F. A. Tomas-Barberan, and M. I. Gil. 2005. Carotenoids form new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. J. Agric. Food Chem. 53:6368-6374. Saeed, M., C. A. Francis, J. F. Rajewshi, and J. W. Maranville. 1987. Genotype × environment interaction and stability ana- lysis of protein and oil in gain sorghum. Crop Sci. 27: 169-171. Saha, S. N. and S. C. Bhargava. 1980. Physiological analysis of growth, development and yield of oil seed sesame. J. Agric. Sci. 95:733-736. Saha, S. N. and S. C. Bhargava. 1984. An evaluation of the oil concentration in sesame seeds in relation to developmental stage, node position and capsule age. Expl. Agric. 20:129-134. Scully, B. T., D. H. Wallace, and D. R. Viands. 1991. Heritability and correlation of biomass, growth rates, harvest index, and phenology to the yield of common beans. J. Amer. Soc. Hort. Sci. 116(1):127-130. Shyu, Y. S. and L. S. Hwang. 2002. Antioxidantive activity of the crude extract of lignan glycosides from unroasted burma black sesame meal. Food Res. International 35(4):357-365. Smith, S. W. and R. A. Creelman. 2001. Vitamin E concentration in upland cotton seeds. Crop Sci. 41:577-579. Solanki, Z. S. and R. V. Paliwal. 1981. Genetic variability and heritability studies on yield and its compounds in sesame. Indian J. Agric. Sci. 51(8):554-556. Tashiro, T., Y. Fukuda, and T. Osawa. 1991. Oil contents of seeds and minor components in the oil of sesame, sesamum indicum L., as affected by capsule position. Japan. J. Crop Sci. 60:116-121. Tashiro, T., Y. Fukuda, T. Osawa, and M. Namiki. 1990. Oil and minor components of sesame (Sesamum indium L.) strains. JAOCS 67(8):508-511. Vollmann, J. C. N. Fritz, H. Wagentristl, and P. Ruckenbauer. 2000. Enuronmental and genetic variation of soybean seed protein content under central European growing conditions. J. Sci. Food Agric. 80: 1300-1306. Were, B. A., A. O. Onkware, S. Gudu, M. Welander, and A. S. Carlsson. 2006. Seed oil content and fatty acid composition in East African sesame (Sesamum indicum L.) accessions evaluated over 3 years. Field Crops Res. 97:254-260. Yamashita, K., Y. Nohara, K. Katayama, and M. Namiki. 1992. Sesame seed lignans and γ-tocopherol act synergistically to produce vitamin E activity in rats. J. Nutr. 122:2440-2446. Yen, G. C. 1990. Influence of seed roasting process on the changes in composition and quality of sesame (Sesamum indicum) oil. J. Sci. Food Agric. 50:563-570. Yoshida, H. 1994. Composition and quality characteristics of sesame seed (Sesamum indicum) oil roasted at different temperatures in an electic oven. J. Sci. Food Agric. 65:331-336. Yoshida, H. and G. Kajimoto. 1994. Microwave heating affects composition and oxidative stability of sesame (Sesamum indicum) oil. J. Food Sci. 59(3):613-616. Yoshida, H., J. Shigezaki, S. Takagi, and G. Kajimoto. 1995. Variations in the composition of various acyl lipids, tocopherols and lignans in sesame seed oil roasted in a microwave oven. J. Sci. Food Agric. 68:407-415. Yoshida, H. and S. Takagi. 1997. Effects of seed roasting temperature and time on the quality characteristics if sesame (Sesamum indicum) oil. J. Sci. Food Agric. 75:19-26. Yoshida, H., Y. Hirakawa, and S. Takagi. 2000. Roasting influences on molecular species of triacylglycerols in sesame seeds (Sesamum indicum). J. Sci. Food Agric. 80:1495-1502.
摘要: 
本試驗主要目的為:探究胡麻抗氧化物質之品系間遺傳變異;探討抗氧化物質含量在蒴果成熟期間之經時變動;研究不同加工條件對抗氧化物質之影響。
試驗結果得知,各類抗氧化物質含量在收集系間及季節間皆有極顯著的變異性,而且在收集系與季節之間也有極顯著的交感作用存在。就不同種皮顏色而言,白色收集系有較高的sesamin、γ-tocopherol及sesaminol triglucoside含量。再就不同來源地區而言,東南亞、台灣、韓國及日本胡麻收集系分別有較高的sesamin、sesamolin、γ-tocopherol及sesaminol triglucoside含量,中亞地區收集系的sesamin、sesamolin及γ-tocopherol含量則為較低。
由抗氧化物質與農藝性狀間的相關分析結果顯示,單株產量與sesamolin平均含量呈現極顯著正相關;含油量與sesamin平均含量也呈現極顯著的正相關,顯示有機會選育高產優質的基因型。根據主成分分析顯示,依期作別可分別選得優良的雜交親本,建議國內可依期作別進行胡麻育種工作。
在蒴果成熟期間,在植株底部蒴果尖端稍有裂開時,單蒴子實重量及各類抗氧化物質含量為最高,含油量在底部部位落葉前會迅速增加,之後則平穩的變動。顯示當胡麻植株底部蒴果尖端稍有裂開時,即為其最佳採收適期。
胡麻子實經烘烤處理後會有sesamol生成,但烘烤和脫皮後則都會造成sesamin、sesamolin、γ-tocopherol及sesaminol triglucoside含量減少。而脫皮的子實再烘烤,抗氧化物質則更容易因高溫而分解,建議在製成各類胡麻加工品時,可考慮保留子實完整性。基因型和加工處理間的sesamin及γ-tocopherol無交互作用存在。

The main objects in this study were investigate genetic variations relate to antioxidants and changes of antioxidants concentration during capsule development period. The post-harvest processing that may affect the antioxidants content was also studied.
Significant differences were found in the compositions of antioxidant among sesame accessions and crop seasons, and caused remarked interaction between accession and crop season. The white seedcoat accessions contained higher sesamin, γ-tocphoerl and sesaminol triglucoside contents. The Southeast Asia, Taiwan, Korea and Japan accessions contained higher seamin, sesamolin, γ-tocphoerl and sesaminol triglucoside contents, respectively. The Middle Asia had lower sesamin, sesamolin and γ-tocphoerl.
The results of significant correlations between seed yield and sesamolin content, and between the oil and sesamin content suggested that breeding for variety with high yield and good quality is feasible. According to the principal analysis, accessions with satisfied characteristics can be obtained between crop seasons. Therefore, it is suggested that breeding variety suitable for each crop season is necessary for sesame.
The seed oil reached the highest content right before the lower canopy defoliation. Both the seed weight and antioxidants content reached the highest levels when the capsule started split at the bottom suggesting the proper time for harvest.
The high temperature and peeling during roasting induced the sesamol synthesis and degradation of sesamin, sesamolin, γ-tocopherol and sesaminol triglucoside. It is suggested that keep the intactness of seedcoat is critical for good quality. There not interaction between genotype and processing in sesamin and γ-tocopherol contents.
URI: http://hdl.handle.net/11455/36767
其他識別: U0005-0502200711314200
Appears in Collections:農藝學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.