Please use this identifier to cite or link to this item:
標題: 由雙酚A合成4, 4''-Isopropylidene diphenylcarbamate並以非光氣法製備聚尿素高分子
Synthesis and poly-amination of 4,4''-Isopropylidene diphenylcarbamates from Bisphenol A : a non-phosgene route to polyurea
作者: 吳子民
Wu, Zih-Min
關鍵字: De-phenol trans-alkylation;除酚烷交換;Polyamination;Non-phosgene;Polyurea;聚胺化;非光氣法;聚尿素高分子
出版社: 化學工程學系所
引用: 1. D. Randall, S. Lee, The Polyurethanes Book; John Wiley: New York, 2000 2. 山西省化工研究所,聚胺酯彈性體手冊,化學工業出版社,2001年 3. 黃微波,噴塗聚脲彈性體技術,化學工業出版社,2005年 4. 張豐志,應用高分子手冊,五南圖書,2003年 5. D.C. Allport, D.S. Gilbert, S.M. Outterside, MDI and TDI:a safety, health and the environment, John Wiley: New York, 2003 6. 中鼎月刊,第28期,312頁,2003年 7. H. Hellbach, F. Merger, F. Towae, U.S. Patent 4,596,679 1984. 8. G. Bohmholtd, W. Heitmann, P. Kirechner, U.S. Patent 5,360,931 1993. 9. 鍾子惠,非光氣法合成2,2-bis(4-isocyanatophenyl)propane及其在耐黃變型聚胺酯之應用研究,國立中興大學化學工程學系,台中,2007年。 10. N. E. House, C. J. Kolaskie, U.S. Patent 6,063,892 2002. 11. W. F. Brill, N. J. Skillman, U.S. Patent 3,763,217 1973. 12. A. Michele, D. Angela, Q. Eugenio, Tetrahedron, 1998, 14145-14156. 13. K. Harada, R. Sugise, K. Kashiwagi and T. Matsuura, U.S. Patent 6,143,917 2002. 14. B. Thavonekham, Synthesis, 1997, 1189-1194. 15. K. Manfred, D. Wilmington, U.S. Patent 2,888,438 1959. 16. K. Heinrich, R. Heinrich, B. Krefeld and S. Hermann, U.S. Patent 3,418,317 1968. 17. H. Krimm, U.S. Patent 3,670,024 1972. 18. K. K. Sun, U.S. Patent 4,177,211 1979.
本實驗室以前的研究,成功地以兩步驟非光氣法由雙酚A(BPA)合成出新型的二元異氰酸鹽單體2,2-bis(4-isocyanatophenyl)propane,然而在第一步驟的「除酚-烷交換反應」製作裡,使用到具有較高腐蝕性的甲基磺酸(MSA)做為酸促進劑,如今為了使製程更符合綠色化學,本研究改以甲苯磺酸(TSA)取代甲基磺酸(MSA),成功製備出具有高轉化率(>99%)的雙胺基甲酸甲酯化合物Dimethyl 4,4''-Isopropylidene diphenylcarbamate(1),產率75~80%,並能回收甲苯磺酸(TSA)(70%)以利重複再使用。
由雙胺基甲酸甲酯化合物(1)經由水解可得到具有高產率(92%)之雙苯胺A化合物4,4''-Isopropylidene dianiline,再利用此雙苯胺A與碳酸二苯酯(diphenyl carbonate)進行羰基化(carbonylation)反應,合成出產率為85%的聚尿素高分子中間體,雙胺基甲酸苯酯化合物Diphenyl 4,4''-Isopropylidene diphenylcarbamate(2)。
本研究不但可由雙酚A(BPA)合成雙胺基甲酸酯中間體,亦可利用此中間體在DMSO溶劑下與Polyether diamine(Jeffamine)經由聚胺化反應製備聚尿素高分子,程序中解決了聚尿素樹酯依靠光氣等毒性化合物的使用。

In this study, non-phosgene routes of synthesizing polyureas using bisphenol A (BPA) and N-methyl phenyl carbamate (MPC) as the starting raw materials have been achieved successfully.
Methanesulfonic acid (MSA) was used previously as the acid media for trans-alkylation of BPA with MPC in our laboratory in formation of dimethyl 4,4'-Isopropylidene diphenylcarbamate, (1). In order to improve this process to meet the green chemistry criteria, toluenesulfonic acid (TSA) was successfully adapted to the process to replace MSA. Now, the improved synthesis can achieve 99% conversion of BPA in getting (1) in 75~80% isolation yield. In the meantime, TSA could be recovered in 70% from each run for recycling.
Biscarbamate (1) was hydrolyzed with dilute sodium hydroxide solution readily at 205℃ in autoclave to 4,4'-Isopropylidene dianiline (92%). The latter was carbonylated with diphenyl carbonate into diphenyl 4,4'-Isopropylidene diphenylcarbamate (2) in 85% yield. Biscarbamate (2) is another candidate intermediate in addition to (1) for the synthesis of polyurea via non-phosgene route.
Amination study of biscarbamate (1) and (2) with polyether diamines (Jeffamine) indicated that both carbamate groups of (1) and (2) could be transformed into ureas and polyureas. However, the amination reaction of (2) appears to have definitive advantages over that of (1) because of its being done at a lower reaction-temperature and a faster reaction-rate. In addition, the polyureas made from (2) and polyether diamines also gave higher molecular weights and better solubility.
Our present study thus established that non-phosgene route to polyurea can be most confidently achieved by carried out the amination of biscarbamate (2) with diamines at 70℃ in DMSO solution.
其他識別: U0005-1208200817325700
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.