Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3679
標題: 生物可分解性聚琥珀酸丁酯/多壁奈米碳管複合材料之製備與探討
Preparation and Properties of Biodegradable Poly(butylene succinate)/Multi-Walled Carbon Nanotube Nanocomposites
作者: 陳立姍
Chen, Li-Shan
關鍵字: multi-walled carbon nanotubes;多壁奈米碳管;biodegradable;poly(butylene succinate);生物可分解性;聚琥珀酸丁酯
出版社: 化學工程學系所
引用: 圖解生物可分解塑膠,世茂出版,日本生物可分解塑膠研究會著,蕭 志強譯,ISBN:9577767893,12-13,(2006) Iijima S. Nature. 56, 354 (1991) 新塑膠時代的來臨,美國殼物協會出版,日本生物分解性塑膠實際應用研究委員會原著,許鴻淵譯,14-16,(1995) 生物可分解塑膠,美國殼物協會出版,美國穀物協會編著,5-10,(1997) T. Fujimaki, Polym. Degrad. Stabil. 59, 209 (1998) 環境生物材料講義,塑膠工業技術發展中心,沈曉復博士編著 K. T. Lau, D. Hui, Compos. Pt. B-Eng. 33, 263, (2002) Iijima, S. Nature. 354, 56, (1991) E. T. Thostensona, Z. Renb, T. W. Chou, Compos. Sci. Technol. 60, 1899, (2001) L. Bokobza, Polymer 48, 4907, (2007) C. H. Tseng, C. C. Wang, C. Y. Chen, Chem. Mater.19, 308, (2007) Z. Zhang, J. Zhang, P. Chen, B. Zhang, J. He, G. H. Hu, Carbon 44, 692, (2006) S. S. Ray, S. Vaudreuil, A. Maazouz, M. Bousmina, J. Nanosci. Nanotechnol. 6, 2191 (2006) E. T. Thostenson, T. W. Chou, Carbon 44, 3022, (2006) X. Gong, J. Liu, S. Baskaran, R. D. Voise, J. S. Young, Chem. Mater. 12, 1049, (2000) B. Z. Tang, H. Xu, Macromolecules 32, 2569, (1999) C. V. Santos, F.T. Fisher, R. Ruoff, V. M. Castano, Chem. Mater. 15, 4470, (2003) S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, M. S. Jhon, Macromol. Rapid Commun. 24, 1070, (2003) Y. Wang, J. Deng, K. Wang, Q. Zhang, Q. Fu, J. Appl. Polym. Sci. 104, 3695, (2007) D. Tasis,N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 1105, (2006) S. T. Lin, K. L. Wei, T. M. Lee, K.C. Chiou, J. J. Lin, Nanotechnology 17, 3197, (2006) J. Chen, M. A. Hamon, H. Hui, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Science 282, 95, (1998) M. A. Hamon, H. Hui, P. Bhowmik, S. Niyogi, B. Zhao, M. E. Itkis, R. C. Haddon, Chem. Phys. Lett. 347, 8, (2001) M. A. Hamon, H. Hui, P. Bhowmik, H.M.E. Itkis, R.C. Haddon, Appl. Phys. A-Mater. Sci. Process. 74, 333, (2002) J. Yang, J. Hu, C. Wang, Y. Qin, Z. Guo, Macromol. Mater. Eng. 289, 828, (2004) C Chen, Y. Zhang, J. Phys. D-Appl. Phys. 39, 172, (2006) O. Breuer, U. Sundararaj, Polym. Compos. 25, 630, (2004) M. Moniruzzaman, K. I. Winey, Macromolecules 39, 5194, (2006) Y. Someya, T. Nakazato, N. Teramoto, M. Shibata, J. Appl. Polym. Sci. 91, 1463 (2004) S. S. Ray, M. Bousmina, Polymer 46, 12430, (2005) S. S. Ray, J. Bandyopadhyay, M. Bousmina, Polym. Degrad. Stabil. 92, 802, (2007) Y. F. Shih, T. Y. Wang, R. J. Jeng, J. Y. Wu, C. C. Teng, J. Polym. Environ.15, 151, (2007) J. S. Lim, S. M. Hong, D. K. Kim, S. S. Im, J. Appl. Polym. Sci. 107, 3598, (2008) H. S. Kim, B. H. Park, J. S. Yoon, H. J. Jin, Polym Int 56, 1035 (2007) H. Zeng, C. Gao, D. Yan, Adv. Funct. Mater. 16, 812 (2006) W. Song, Z. Zheng, W. Tang, X. Wang, Polymer 48, 3658 (2007) C. S. Wu, H. T. Liao, Polymer 48, 4449 (2007) K. Saeed, S. Y. Park, J. Appl. Polym. Sci. 104, 1957 (2007) J. Li, Z. Fang, L. Tong, A. Gu, F. Liu, Eur. Polym. J. 42, 3230, (2006) M. Avrami, J. Chem. Phys. 7, 1103, (1939) M. Avrami, J. Chem. Phys. 8, 212, (1940) A. Jeziorny, Polymer 19, 1142, (1978) S. H. Lee, T. Ohkita, Holzforschung 58, 537, (2004) G. X. Chen, J. S. Yoon, J. Polym. Sci. Pt. B-Polym. Phys. 43, 817, (2005) S. S. Ray, M. Bousmina, Macromol. Chem. Phys. 207, 1207, (2006) B. Wang, G. Sun, J. Liu, X. He, J. Li, J. Appl. Polym. Sci.100, 3794, (2006) J. Y. Kim, H. S. Park, S. H. Kim, Polymer 47, 1379, (2006) E. C. Chen, T. M. Wu, Polym. Eng. Sci. 46, 1309, (2006) E. C. Chen, T. M. Wu, J. Polym. Sci. Pt. B-Polym. Phys. 46, 158, (2008) K. Cho, J. Lee, K. Kwon, J. Appl. Polym. Sci. 79, 1025, (2001) I. Taniguchi, S. Nakano, T. Nakamura, A. E. Salmawy, M. Miyamoto, Y. Kimura, Macromol. Biosci. 2, 447, (2002) M. S. Nikolic, D. Poleti, J. Djonlagic, Eur. Polym. J. 39, 2183, (2003) F. Li, X. Xu, J. Yu, A. Cao, Polym. Degrad. Stabil. 92, 1053, (2007) C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang, M. Yang, Z. Yang, J. Solid State Chem. 177, 4394, (2004) Z. Kulinski, and E. Piorkowska, Polymer 46, 10290, (2005). H. Zhang, Z. Zhang, Eur. Polym. J. 43, 3197, (2007) 奈米碳管,五南出版,成會明編著,ISBN:9571134996,38-41,(2004) G. Hu, C. Zhao, S. Zhang, M. Yang, Z. Wang, Polymer 47, 480, (2006) 碳奈米管/聚胺基甲酸酯複合材料製備及其性質研究-清華大學王崇豪碩士論文,46-47,(2006) M. T. Kortschot, R. T. Woodhams, Polym. Compos. 9, 60, (1988) J. B. Bai, A. Allaoui, Compos. Pt. A-Appl. Sci. Manuf. 34, 689 (2003) J. Sandlera, M. S. P. Shaffera, T. Prasseb, W. Bauhoferb, K. Schultea, A. H. Windlea, Polymer 40, 5967, (1999) M. K. Seo, J. R. Lee, S. J. Park, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 404, 79, (2005) B. K. Zhu, S. H. Xie, Z. K. Xu, Y. Y. Xu, Compos. Sci. Technol. 66, 548, (2006) 抗靜電/導電性材料最新發展趨勢及商業探討,工研院經資中心出 版,經濟部技術處發行,陳怡甄等作,ISBN:9577747744,II.2-3,(2005) 沈永清,導電性塑膠材料,化工資訊,9,6-14,(1998) J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, E. V. Barrera, Nano Lett. 3, 1107, (2003) W. Tang, M. H. Santare, S. G. Advani, Carbon 41, 2779, (2003) H. D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Appl. Phys. Lett. 72, 188, (1998) X. Lu, J. Hay, Polymer 42, 9423, (2001) D. Lorenzo, C. Silvestre, Prog Polym Sci. 24, 917, (1999)
摘要: 
本研究藉由熔融混煉(melt-blending)的方式,將聚琥珀酸丁酯(Poly(butylene succinate))和多壁奈米碳管(multi-walled carbon nanotubes)進行混摻,獲得奈米複合材料。為了增加多壁奈米碳管在複合材料中的分散性,將碳管表面進行化學修飾,首先將多壁奈米碳管浸入HNO3溶液中,進行酸化,使碳管表面帶有羧酸(-COOH)的官能基,然後再加入十八烷醇(Stearyl alcohol),在溫和的條件下,藉由N,N’-二環己基碳二亞胺(N,N’-dicyclohexyl- carbodiimide,DCC)脫水劑脫水,使碳管和十八烷醇之間產生酯基的化學鍵結,改質後的碳管可以分散在acetone、THF、chloroform…等有機溶劑中,結果顯示成功的利用DCC脫水劑完成碳管的改質。再利用簡單的熔融混煉方式製備PBS/CNTs奈米複合材料,對於複材的熱性質、機械性質及導電性質進行探討。結果顯示,CNT-C18可以均勻分散在PBS中,有效的改善複材的熱性質、機械性質及導電性質。添加3 wt %的CNT-C18之複材,在25oC下其儲存模數和損失模數分別提升了120及55 %,5 wt %重量損失之熱裂解溫度提升12.3 °C。在導電性部分,PBS的表面電阻 > 1016 Ω/cm2,而添加3 wt %的CNT-C18之複材,其表面電阻降低 < 107 Ω/cm2,具有抗靜電的效果,未來可用應用在電子包裝材上。

In this study, poly(butylene succinate)/multi-walled carbon nanotubes (PBS/CNTs) hybrids were prepared by a melt blending method. In order to enhance the compatibility between PBS and CNT, the surfaces of CNT were chemically modified. CNTs were first pre-treated using acid solution (HNO3) to obtain CNTs functionalized with carboxylic groups. Subsequently, the stearyl alcohol was grafted onto CNT with the assistance of dehydrating agent, N,N'-dicyclohexyl-carbodiimide (DCC). Excellent dispersion in organic solvents such as acetone, THF, and chloroform was found for the modified CNTs (CNT-C18). In addition, the PBS/CNTs nanocomposites were then prepared through simple melt-blending. Mechanical properties, thermal behavior, conductivity of resultant polymer/CNT composites were investigated. The results show that excellent dispersion of nanotubes in the PBS matrices was achieved. Moreover, an improvement in thermal and mechanical properties was also observed. With the addition of 3 wt % of CNT-C18, Td of the nanocomposite was increased up to 12.3 °C. Apart from that, the increments of E' and E” of the nanocomposite at 25 °C were 120 and 55 %, respectively. In the aspect of conductivity, the surface resistivity of the PBS/CNT-C18 composites decreased from > 1016 Ω/cm2 for neat PBS to < 107 Ω/cm2 for the nanocomposites with 3 wt % of CNT-C18. Such PBS/CNT-C18 nanocomposites are highly efficient in anti-static purpose, which can be applied in electronic packaging materials.
URI: http://hdl.handle.net/11455/3679
其他識別: U0005-1407200810111800
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.