Please use this identifier to cite or link to this item:
標題: Phosphinothricin 誘導紫錐菊葉片培植體形成芽體的效果
Effects of Phosphinothricin on Shoot Induction of Leaf Explants of Echinacea purpurea
作者: 方浩宇
Fang, Hao-Yu
關鍵字: Phosphinothricin;紫錐菊;Echinacea purpurea;固殺草
出版社: 農藝學系所
引用: 王智屏。2005。銨逆境下,細胞分裂素對水稻小苗微芽生長之效應。碩士論文。台中:國立中興大學農藝所。 林訓仕。2005。水稻微芽之誘導分化及其對除草劑之耐性。碩士論文。台中:國立中興大學農藝所。 張世政。2005。台灣地區紫錐菊生產與品質評估之研究。碩士論文。台中:國立中興大學農藝所。 Babic, V., R. S. Datla, G. J. Scoles, and W. A. Keller. 1997. Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep. 17: 183-188. Bayer, E., K. H. Gugel, K. Hagele, H. Hagenmaier, S. Jessipow, W. A. Konig, and H. Zahner. 1972. Stoffwechselproduket von Mikroorganismen. Phosphinothricin and phosphinothricyl-Alanyl-Alanin. Helv. Chim. Acta. 55: 224-239. Chen, J. G., S. H. Cheng, W. Cao, and X. Zhou. 1998. Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat. J. Plant Nutri. 21: 87-97. Cho, M. J., H. W. Choi, D. Okamoto, S. Zhang, and P. G. Lemaux. 2003. Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Rep. 21: 467-474. Choffe, K. L., J. M. R. Victor, S. J. Murch, and P. K. Saxena. 2000. In vitro regeneratition of Echinacea purpurea L. direct somatic embryogenesis and indirect shoot organogenesis in petiole culture. In Vitro Cell. Dev. Biol. -Plant 36: 30-36. Coetzer, E., K. AI-Khatib, and T. M. Loughin. 2001. Glufosinate efficacy, absorption, and translocation in amaranth as effected by relative humidity and temperature. Weed Sci. 49: 8-13. Gamage, N. and T. Nakanishi. 2000. In vitro shoot regeneration from leaf tissue of apple (cultivar “Orine”): high shoot proliferation using carry over effect of TDZ. Acta Hort. 520: 291-299. Halle, J. R., S. Ghosh, E. B. Dumbroff, and J. J. Heikkila. 1990. Effect of evaluated temperatures on heat shock protein and ribulose-1,5-bisphosphate carboxylase gene expression in Brassica napus. Biochem. Cell Biol. 68: 609-615. Harbage, J. F. 2001. Micropropagation of Echinacea angustifolia, E. pallida, and E. purpurea from stem and seed explants. HortScience 36: 360-364. Hebert-soule, D., J. R. Kikkert, and B. J. Reisch. 1995. phosphinothricin stimulates somatic embryogenesis in grape (Vitis sp. L.). Plant Cell Rep. 14: 380-384. Hoshino, Y. and M. Mii. 1998. Bialaphos stimulates shoot regeneration from hairy roots of snapdragon (Antirrhinum majus L.) transformed by Agrobacterium rhizogenes. Plant Cell Rep. 17: 256-261. Hsu, Y. T. and C. H. Kau. 2004. Phosphinothricin tolerance in rice (Oryza sativa L.) seedlings is associated with elevated abscisic acid in the leaves. Bot. Bull. Acad. Sin. 45: 41-48. Hu, C. and D. D. Kitts. 2000. Studies on the antioxidant of Echinacea. Root extract. J. Agric. Food Chem. 48: 1466-1472. Hurst, P. L., G. A. King, and W. M. Borst. 1993. Postharvest inhibition of glutamine synthetase activity with phosphinothricin reduces the shelf-life of asparagus. Posth. Biol. Tech. 3: 327-334. Jansen, C., I. Schuphan, and B. Schmidt. 2000. Glufosinate metabolism in excised shoots and leaves of twentyplant species. Weed Sci. 48: 319-326. Kamo, K. and J. V. Eck. 1997. Effect of bialaphos and phosphinothricin on plant regeneration from long- and short- term callus cultures of Gladiolus. In Vitro Cell. Dev. Biol. -Plant 33: 180-183. Knapp, J. E., A. P. Kausch, and J. M. Chandlee. 2000. Transformation of three genera of orchid using the bar gene as a selectable marker. Plant Cell Rep. 19: 893-898. Komossa, D. and H. Sandermann Jr. 1992. Plant metabolism of herbicides with C-P bonds: phosphinothricin. Pesti. Biochem. Physiol. 43: 95-102. Koroch, A., J. Kapteyn, H. R. Juliani, and J. E. Simon. 2002. In vitro regeneration and Agrobacterium transformation of Echinacea purpurea leaf explants. Trends in new crops and new uses. Proceedings of the Fifth National Symposium, Atlanta, Georgia, USA, 10-13 November, 2001. 522-526. Krieg, L. C., M. A. Walker, T. Senaratna, and B. D. McKersie. 1990. Growth, ammonia accumulation and glutamine synthetase activity in alfalfa (Medicago sativa L.) shoots and cell cultures treated with phosphinothricin. Plant Cell Rep. 9: 80-83. Laemmil, U. K. 1970. Cleavage of stractural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. Lakshmanan, P., M. Danesh, and A. Taji. 2002. Production of four commercially cultivated Echinacea species by different methods of in vitro regeneration. J. Hort. Sci. Bio. 77: 158-163. Lea, P. J., K. W. Joy, J. L. Ramos, and M. G. Guerrero. 1984. The action of the 2-mino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plant. Phytochemistry 23: 1-6. Liu, P. W., G. Neumann, F. Bangerth, and C. Engels. 2000. Rapid effects of nitrogen from on leaf morphogenesis in tobacco. J. Exp. Bot. 51: 227-237. Loaiza, J., R. Valverde, and L. Gomez. 2004. Micropropagation of Echinacea purpurea using lateral shoots and seeds as explants. Agro. Cos. 28: 17-26. Lorz, H., I. Potrykus, and E. Thomas. 1977. Somatic embryogenesis from tobacco protoplasts. Naturwissenschaften 64: 439-440. McGregor, R. L. 1968. The taxonomy of the genus Echinacea. Univ. Kansas Sci. Bul. 48: 113-142. Mechanda, S. M., B. R. Baum, D. A. Johnson, and J. T. Arnason. 2003. Direct shoot regeneration from leaf segments of mature plants of Echinacea purpurea (L.) Moench. In Vitro Cell. Dev. Bio. -Plant 39: 505-509. Milczarek, I. M. and J. Zimny. 2001. NH4+ and NO3- requirement for wheat somatic embryogenesis. Acta Physiol. -Plantarum 23: 37-42. Oktem, H. A., Y. Soyer, F. Setenci, and M. Yucel. 1997. Development of herbicide resistant transgenic tobacco plants. Anad. Kard. Derg. 7: 80-88. Pan, Z. G., C. Z. Liu, S. M. A. Zobayed, and P. K. Saxena. 2004. Plant regeneration from mesophyll protoplasts of Echinacea purpurea. Plant Cell Tiss. Org. Cult. 77: 251-255. Palmer, C. E. and M. Oelck. 1992. The relationship of phosphinothricin to growth and metabolism in cell culture of Brassica napus L. Plant Physiol. 141: 105-110. Parkash, L., M. Danesh, and A. Taji. 2002. Production of four commercially cultivated Echinacea species by different methods in vitro regeneration. J. Horticult. Sci. Biotech. 77: 158-163. Parry, M. A. J., C. N. G. Schmidt, M. J. Cornelius, B. N. Millard, S. Burton, S. Gutteridge, T. A. Dyer, and A. J. Keys. 1987. Variations and properties of ribulose-1,5-bisphosphate carboxylase from various species related to differences in amino acid sequences. J. Exp. Bot. 38: 1260-1271. Pigeaire, A., D. Abernethy, P. M. Smith, K. Simpson, N. Fletcher, C. Y. Lu, C. A. Atkins, and E. Cornish. 1997. Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol. Bree. 3: 341-349. Pline, W. A., J. Wu, and K. K. Hatzios. 1999. Absorption, translocation, and metabolism of glufosinate in five weed species as influenced by ammonium sulfate and pelargonic acid. Weed Sci. 47: 636-643. Pornprom, T., S. Surawattananon, and P. Srinives. 2000. Ammonia accumulation as an index of glufosinate-tolerant soybean cell lines. Pestic. Biochem. Physiol. 68: 102-106. Punja, Z. K. and W. P. Chen. 2003. Tissue culture of American ginseng and genetic engineering to express antifungal proteins. Acta. Hort. 625: 395-401. Raab, T. K. and N. Terry. 1994. Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. Plant Physiol. 105: 1159-1166. Shalaby, A. S., E. A. Agina, S. E. El-Gengaihi, A. S. El-Khayat, and S. F. Hindawy. 1997a. Response of Echinacea to some agricultureal practices. J. Herbs Spices Med. Plant 4: 59-67. Shalaby, A. S., S. E. El-Gengaihi, E. A. Agina, A. S. El-Khayat, and S. F. Hindawy. 1997b. Growth and uield of Echinacea purpurea L. as influenced by olanting density and fertilization. J. Herbs Spices Med. Plant 5: 69-76. Skora Note, F., H. D. Coble, and F. T. Corbin. 2000. Absorption, translocation, and metabolism of 14C-glufosinate in Xanthium Strumarium, Commelina Difusa, and Ipomoea Purpurea. Weed Sci. 48: 171-175. Sujatha, M. and T. P. Reddy. 1998. Differential cytokinin effects on the stimulation of in vitro shoot proliferation from meristematic explants of castor (Ricinus communis L.). Plant Cell Rep. 17: 561-566. Thompson, C. J., N. R. Movva, R. Tizard, R. Crameri, J. E. Davies, M. Lauwereys, and J. Botterman. 1987. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6: 2519-2523. Toldi, O., S. Toth, A. S. Oreifig, E. Kiss, and B. Jenes. 2000. Production of phosphinothricin-tolerant rice (Oryza Sativa L.) through the application phosphinothricin as growth regulator. Plant Cell Rep. 19: 1226-1231. Vasil, V., A. M. Castillo, M. E. Fromm, and I. K. Vasil. 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology 10: 667-674. Wendler, C., A. Putzer, and A. Wild. 1992. Effect of glufosinate (phosphinothricin) and inhibitors of photorespiration on photosynthesis and ribulose-1,5-bisphosphate carboxylase activity. J. Plant Physiol. 139: 666-671. Wild, A. and C. Ziegler. 1989. The effect of bialaphos on ammonium-assimilation and photosynthesis. I. Effect on the enzymes of ammonium assimilation. Z. Naturforsch 44: 97-102. Witjaksono and R. E. Litz. 1999. Maturation of avocado somatic embryos and plant recovery. Plant Cell Tiss. Org. cult. 58: 141-148. Zhang, S., L. H. Zhu, X. Y. Li, A. Ahlman, and M. Welander. 2005. Infection by Agrobacterium tumefaciens increased the resistance of leaf explants to selective agents in carnation (Dianthus caryophyllus L. and D. Chinensis). Plant Sci. 168: 137-144. Zobayed, S. M. A. and P. K. Saxena. 2003. In vitro regeneration of Echinacea purpurea L.: enhancement of somatic embryogenesis by indolebutyric acid and dark pre-incubation. In Vitro Cell. Dev. Biol. -Plant 39: 605-612.
本試驗以中興大學 陳宗禮教授提供的cichoric acid 超過2.2 % 乾重的三個紫錐菊篩選株 (T5.9、T2.15、D7.4) 進行phosphinothricin (PPT) 葉片培養試驗 (所有培養基均含0.44 μM BA及0.54 μM NAA)。以各濃度PPT (0、0.5、1.0、1.5 μM) 處理1、2及4週之研究紫錐菊葉片培植體誘導芽體的效果。
持續四週各濃度PPT處理中,T5.9篩選株獲得的芽體較健康,T2.15篩選株獲得的芽體易有玻璃質化現象,D7.4篩選株於0.5 μM PPT處理則有發根現象。T5.9篩選株以未處理PPT獲得最高芽體誘導率 (70.9%),而芽體數則以0.5 μM PPT處理較高 (2芽體數/培植體) 。T2.15以0.5 μM PPT處理下有較高誘導率 (69.8 %) 及芽體數 (2.4芽體數/培植體)。D7.4篩選株於PPT處理下未能形成大量芽體。1.0 μM PPT處理下僅T2.15篩選株有芽體誘導形成,1.5 μM PPT處理下則三個篩選株培植體皆無芽體形成。
葉片培植體以各濃度PPT處理第一週或前二週,觀察PPT的繼續作用效果。僅處理一週下,三個篩選株於高濃度 (1.0與1.5 μM) PPT處理下有提早形成芽體之趨勢。T5.9與T2.15篩選株於0.5 μM PPT處理可誘導出最多的芽體數 (2.4 與2.2個/培植體),D7.4篩選株則仍以0 μM PPT處理有較佳的芽體誘導率。僅前二週處理下,發現三個篩選株於1.0 μM PPT處理下芽體誘導率上升,T5.9、T2.15與D7.4培植體形成芽體數達4.6、2.8與4.5個。
觀察0-9天PPT處理下培植體水溶性蛋白質含量的變化,發現有芽體形成之處理其水溶性蛋白質含量增加,而無芽體生長之處理其水溶性蛋白質含量降低。以SDS-PAGE檢測水溶性蛋白質條帶變化,PPT處理會抑制Rubisco生成,且T5.9篩選株於36 kDa附近有新條帶形成。

Leaves of three elite plants of Echinacea purpurea L. with cichoric acid over 2.2 % DW provided kindly by professor Chung-Li Chen were used to study the effect of phosphinothricin (PPT) on shoot formation. All the media in this study, here, contained 0.44 μM BA and 0.54 μM NAA. The leaves were cultured in media containing different concentrations of PPT (0, 0.5, 1.0, 1.5 μM) for 1 or 2 weeks and then transferred to medium without PPT to compare with 4 or 5-week-long PPT treatment.
For the 4-week-long PPT treatment, explants had shoots healthly, hyperhydric and rooting apart from shoot (at 0.5 μM PPT) for line T5.9, T2.15 and D7.4, respectively. For line T5.9, the best shoot induction rate (70.9 %) occurred at 0 μM PPT but the maxium shoots (2.0 shoots per explant) formed at 0.5 μM PPT. For line T2.15, both of shoot induction rate (69.8 %) and maxium shoots (2.4 shoots per explant) turned up at 0.5 μM PPT. However, it seemed no good response to PPT treatment for line D7.4 plant. Shoot formation can be found only on line T2.15 explant as PPT concentration high up to 1.0 μM and no shoot emerged on explants of all the three line at 1.5 μM PPT.
The carry-over effect of PPT on shoot formation were detected by disposing leaves of the three lines with different concentrations of PPT treatment only for the first one or two weeks. For the first-one-week PPT treatment, shoots formed earlier on leaf explants of three lines at high concentrations of PPT (1.0 and 1.5 μM) than those of 4-week PPT treatment. There were maxium shoots per explant (2.4 and 2.2) for T5.9 and T2.15 at 0.5 μM PPT, respectively, but the better response for line D7.4 was still at 0 μM PPT. For the first-two-week PPT treatment, shoot induction rates increased with media containing 1.0 μM PPT. There were 4.6, 2.8, and 4.5 shoots per explant for T2.15, T5.9 and D7.4, respectively.
The soluble protein contents of explants of different concentration PPT treatments were analysed in the first 9 days. Explants featured shoot formation later increased soluble protein contents in the first 9 days, but explants with no shoot formation responsed on the contrary. The results of SDS-PAGE indicated that Rubisco contents decreased in PPT treatments and the new band, nearby 36 kDa, appeared in line T5.9.
其他識別: U0005-1508200610125700
Appears in Collections:農藝學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.