Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36799
標題: 氯化鎘對水稻幼苗根生理作用影響之研究
Studies in the Pysiological of CdCl2 on Rice Seedling Roots
作者: 蔣佩珊
Chiang, Pei-Shan
關鍵字: Cadmium;鎘;Rice;lignification;Oxidative stress;水稻;木質化;氧化逆境
出版社: 農藝學系所
引用: 戶刈義次 (1963) 作物學試驗法。東京農業技術學會印行。第159-176頁。 Aghaei K., Ehsanpour A., Shah A., Komatsu S. (2009) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36:91-98. Asada K. (1992) Ascorbate peroxidase- a hydrogen peroxide-scavenging enzyme in plants. Physiologia Plantarum 85:235-241. Bashor C.J., Dalton D.A. (1999) Effects of exogenous application and stem infusion of ascorbate on soybean (Glycine max) root nodules. New Phytologist 142:19-26. Benavides M.P., Gallego S.M., Tomaro M.L. (2005) Cadmium toxicity in plants. Brazilian Journal of Plant Physiology 17:21-34. Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254. Brett C.T., Wende G., Smith A.C., Waldron K.W. (1999) Biosynthesis of cell wall ferulate and diferulates. Journal of the Science of Food and Agriculture 79:421-424. Cachorro P., Ortiz A., Barcelo A., Cerda A. (1993) Lignin deposition in vascular tissues of Phaseolus vulgaris roots in response to salt stress and Ca2+ ions. Phyton 33:33-40. Cai Y., Cao F., Wei K., Zhang G., Wu F. (2011) Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2011.06.011. Chaoui A., El Ferjani E. (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Comptes Rendus Biologies 328:23-31. Chen E.L., Chen Y.A., Chen L.M., Liu Z.H. (2002) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiology and Biochemistry 40:439-444. Cho U.H., Seo N.H. (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science 168:113-120. Christensen J.H., Bauw G., Gjesing Welinder K., Van Montagu M., Boerjan W. (1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiology 118:125-135. Clemens S. (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707-1719. Cobbett C.S. (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiology 123:825-832. Collin V.C., Eymery F.C.O., Genty B., Rey P., Havaux M. (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal induced oxidative stress. Plant, Cell and Environment 31:244-257. Dixit V., Pandey V., Shyam R. (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). Journal of Experimental Botany 52:1101-1109. Djebali W., Gallusci P., Polge C., Boulila L., Galtier N., Raymond P., Chaibi W., Brouquisse R. (2008) Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227:625-639. Ďurčeková K., Huttová J., Mistrík I., Ollé M., Tamás L. (2007) Cadmium induces premature xylogenesis in barley roots. Plant and Soil 290:61-68. Essa T. (2002) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science 188:86-93. Faller P., Kienzler K., Krieger-Liszkay A. (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochimica et Biophysica Acta-Bioenergetics 1706:158-164. Ferrer J.L., Austin M., Stewart Jr C., Noel J. (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry 46:356-370. Finger-Teixeira A., Lucio Ferrarese M.L., Ricardo Soares A., da Silva D., Ferrarese-Filho O. (2010) Cadmium-induced lignification restricts soybean root growth. Ecotoxicology and Environmental Safety 73:1959-1964. Fodor E., Szabo-Nagy A., Erdei L. (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. Journal of Plant Physiology 147:87-92. Foster J.G., Hess J.L. (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiology 66:482-487. Fry S.C. (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annual Review of Plant Physiology 37:165-186. Fuhrer J. (1982) Early effects of excess cadmium uptake in Phaseolus vulgaris. Plant, Cell and Environment 5:263-270. Garnier L., Simon Plas F., Thuleau P., Agnel J.P., Blein J.P., Ranjeva R., Montillet J.U. (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant, Cell and Environment 29:1956-1969. Gossett D.R., Banks S.W., Millhollon E.P., Lucas M.C. (1996) Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. Plant Physiology 112:803-809. Groppa M.I. (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Science 161:481-488. Heath R.L., Packer L. (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125:189-198. Hegedus A., Erdei S., Horvath G. (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Science 160:1085-1093. Herbette S., Taconnat L., Hugouvieux V., Piette L., Magniette M.L.M., Cuine S., Auroy P., Richaud P., Forestier C., Bourguignon J. (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751-1765. Hernandez L.E., Cooke D.T. (1997) Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. Journal of Experimental Botany 48:1375-1381. Heyno E., Klose C., Krieger Liszkay A. (2008) Origin of cadmium induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytologist 179:687-699. Horemans N., Raeymaekers T., Van Beek K., Nowocin A., Blust R., Broos K., Cuypers A., Vangronsveld J., Guisez Y. (2007) Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium. Journal of Experimental Botany 58:4307-4317. Howarth J.R., Dominguez-Solis J.R., Gutierrez-Alcala G., Wray J.L., Romero L.C., Gotor C. (2003) The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Molecular Biology 51:589-598. Hsu Y.T., Kao C.H. (2003) Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium. Plant Growth Regulation 40:147-155. Hyodo H., Fujinami H. (1989) The effects of 2, 5-Norbornadiene on the induction of the activity of 1-aminocyclopropane-l-carboxylate synthase and of phenylalanine ammonia-lyase in wounded mesocarp tissue of Cucurbita maxima. Plant and Cell Physiology 30:857. Iiyama K., Lam T.B.T., Stone B.A. (1994) Covalent cross-links in the cell wall. Plant Physiology 104:315-320. Ishida A., Ookubo K., Ono K. (1987) Formation of hydrogen peroxide by NAD (P) H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells, Marchantia polymorpha L. Plant & Cell Physiology 28:723-726. Jana S., Choudhuri M.A. (1982) Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic Botany 12:345-354. Kato M., Shimizu S. (1987) Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Canadian Journal of Botany 65:729-735. Keller T., Damude H.G., Werner D., Doerner P., Dixon R.A., Lamb C. (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. The Plant Cell 10:255. Kocsy G., von Ballmoos P., Suter M., Ruegsegger A., Galli U., Szalai G., Galiba G., Brunold C. (2000) Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta 211:528-536. Kovacik J., Klejdus B., Backor M., Repcak M. (2007) Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Science 172:393-399. Kuo M.C., Kao C.H. (2004) Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant, rice (Oryza sativa L.) seedlings. Botanical Bulletin of Academia Sinica 45:291-299. Laspina N., Groppa M., Tomaro M., Benavides M. (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science 169:323-330. Li H., Poulos T.L. (1994) Structural variation in heme enzymes: a comparative analysis of peroxidase and P450 crystal structures. Structure 2:461-464. Lin C.C., Kao C.H. (2001a) Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings. Journal of Plant Physiology 158:667-671. Lin C.C., Kao C.H. (2001b) Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Science 160:323-329. Lin C.C., Chen L.M., Liu Z.H. (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Science 168:855-861. Lopez-Martin M.C., Becana M., Romero L.C., Gotor C. (2008) Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. Plant Physiology 147:562-572. Luo Q., Yu B., Liu Y. (2005) Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of Plant Physiology 162:1003-1012. Lux A., Martinka M., Vaculik M., White P.J. (2011) Root responses to cadmium in the rhizosphere: a review. Journal of Experimental botany 62:21-37. MacAdam J.W., Nelson C.J., Sharp R.E. (1992) Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology 99:872. Marrs K.A., Alfenito M.R., Lloyd A.M., Walbot V. (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375: 397-400. McCarthy I., Romero Puertas M., Palma J., Sandalio L., Corpas F., Gomez M., Del Rio L. (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant, Cell and Environment 24:1065-1073. Nakano Y., Asada K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867. Nawrot T., Plusquin M., Hogervorst J., Roels H.A., Celis H., Thijs L., Vangronsveld J., Van Hecke E., Staessen J.A. (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. The Lancet Oncology 7:119-126. Neves G.Y.S., Marchiosi R., Ferrarese M.L.L., Siqueira-Soares R.C., Ferrarese-Filho O. (2010) Root growth inhibition and lignification induced by salt stress in soybean. Journal of Agronomy and Crop Science 196:467-473. Nocito F.F., Lancilli C., Crema B., Fourcroy P., Davidian J.C., Sacchi G.A. (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiology 141:1138-1148. Noriyuki S., Hiroshi U., Waalkes M.P. (1993) Effect of L-ascorbic acid tretreatment on cadmium toxicity in the male Fischer (F344/NCr) rat. Toxicology 85:85-100. O''Brien P.J. (2000) Peroxidases. Chemico-Biological Interactions 129:113-139. Oh S.H., Lim S.C. (2006) A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicology and Applied Pharmacology 212:212-223. Olmos E., Martinez Solano J.R., Piqueras A., Hellin E. (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY 2 line). Journal of Experimental Botany 54:291-301. Olson P., Varner J. (1993) Hydrogen peroxide and lignification. The Plant Journal 4:887-892. Ouariti O., Boussama N., Zarrouk M., Cherif A., Habib Ghorbal M. (1997) Cadmium-and copper-induced changes in tomato membrane lipids. Phytochemistry 45:1343-1350. Paradiso A., Berardino R., De Pinto M.C., Sanita di Toppi L., Storelli M.M., Tommasi F., De Gara L. (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant & Cell Physiology 49:362-374. Perfus Barbeoch L., Leonhardt N., Vavasseur A., Forestier C. (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal 32:539-548. Peyrano G., Taleisnik E., Quiroga M., de Forchetti S.M., Tigier H. (1997) Salinity effects on hydraulic conductance, lignin content and peroxidase activity in tomato roots. Plant Physiology and Biochemistry 35:387-393. Rodriguez-Serrano M., Romero-Puertas M.C., Pazmino D.M., Testillano P.S., Risueno M.C., Del Rio L.A., Sandalio L.M. (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology 150:229-243. Rodriguez Serrano M., Romero Puertas M.C., Zabalza A., Corpas F.J., Gomez M., Del R., Luis A., Sandalio L.M. (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant, Cell and Environment 29:1532-1544. Rogers E.E., Eide D.J., Guerinot M.L. (2000) Altered selectivity in an Arabidopsis metal transporter. Proceedings of the National Academy of Sciences of the United States of America 97:12356-12360. Romero-Puertas M.C., Corpas F.J., Rodriguez-Serrano M., Gomez M., Rio L. A., Sandalio L.M. (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Journal of Plant Physiology 164:1346-1357. Romero-Puertas M.C., Rodriguez-Serrano M., Corpas F.J.., Gomez M., Rio L. A. (2004) Cadmium induced subcellular accumulation of O2.- and H2O2 in pea leaves. Plant, Cell and Environment 27:1122-1134. Sajid Z.A., Aftab F. (2009) Amelioration of salinity tolerance in Solanum tuberosum L. by exogenous application of ascorbic acid. In Vitro Cellular and Developmental Biology-Plant 45:540-549. Sanchez M., Pena M.J., Revilla G., Zarra I. (1996) Changes in dehydrodiferulic acids and peroxidase activity against ferulic acid associated with cell walls during growth of Pinus pinaster hypocotyl. Plant Physiology 111:941-946. Sandalio L., Dalurzo H., Gomez M., Romero-Puertas M., Del Rio L. (2001) Cadmium induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany 52:2115. Sandalio L., Rodriguez-Serrano M., Rio L.A., Romero-Puertas M.C. (2009) Reactive oxygen species and signaling in cadmium toxicity. Reactive Oxygen Species in Plant Signaling:175-189. Sanita di Toppi L., Gabbrielli R. (1999) Response to cadmium in higher plants. Environmental and Experimental Botany 41:105-130. Sasaki M., Yamamoto Y., Matsumoto H. (1996) Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots. Physiologia Plantarum 96:193-198. Schutzendubel A., Polle A. (2002) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53:1351-1365. Schutzendubel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Godbold D.L., Polle A. (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiology 127:887-898. Shi G., Cai Q., Liu C., Wu L. (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation 61:45-52. Skörzy ska-Polit E., Krupa Z. (2006) Lipid peroxidation in cadmium-treated Phaseolus coccineus plants. Archives of Environmental Contamination and Toxicology 50:482-487. Smeets K., Cuypers A., Lambrechts A., Semane B., Hoet P., Van Laere A., Vangronsveld J. (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiology and Biochemistry 43:437-444. Smeets K., Ruytinx J., Semane B., Van Belleghem F., Remans T., Van Sanden S., Vangronsveld J., Cuypers A. (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environmental and Experimental Botany 63:1-8. Tiryakioglu M., Eker S., Ozkutlu F., Husted S., Cakmak I. (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology 20:181-189. Tsyganov V.E., Belimov A.A., Borisov A.Y., Safronova V.I., Georgi M., Dietz K.J., Tikhonovich I.A. (2007) A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium. Annals of Botany 99:227-237. Tuncturk M., Tuncturk R., Yasar F. (2010) Changes in micronutrients, dry weight and plant growth of soybean (Glycine max L. Merrill) cultivars under salt stress. African Journal of Biotechnology 7:1650-1654. Verma K., Shekhawat G., Sharma A., Mehta S., Sharma V. (2008) Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3-4 leaf stage plants of Brassica juncea (L.) czern. Plant Cell Reports 27:1261-1269. Wagner G.J. (1993) Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy 51:173-212. Wakabayashi K., Soga K., Hoson T., Fujii N. (2009) Modification of cell wall architecture in gramineous plants under altered gravity conditions. Biological Sciences in Space 23:137-142. Wintermans J., De Mots A. (1965) Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta -Biophysics including Photosynthesis 109:448-453. Yang Y.J., Cheng L.M., Liu Z.H. (2007) Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Science 172:632-639. Zabalza A., Galvez L., Marino D., Royuela M., Arrese-Igor C., Gonzalez E.M. (2008) The application of ascorbate or its immediate precursor, galactono-1, 4-lactone, does not affect the response of nitrogen-fixing pea nodules to water stress. Journal of Plant Physiology 165:805-812. Zagoskina N., Goncharuk E., Alyavina A. (2007) Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Russian Journal of Plant Physiology 54:237-243. Zhao Z., Cai Y., Zhu Y., Kneer R. (2005) Cadmium induced oxidative stress and protection by L Galactono 1, 4 lactone in winter wheat (Triticum aestivum L.). Journal of Plant Nutrition and Soil Science 168:759-763.
摘要: 
本論文係以台中在來一號 (Oryza sativa L. cv. Taichung Native 1, TN1) 水稻幼苗為試驗材料,擬探討氯化鎘對水稻幼苗根生理作用之影響。
鎘抑制水稻幼苗根生長之原因有二種可能,第一種為根部木質化作用發生,可以從PAL (phenylalanine ammonia-lyase) 活性增加與木質素累積得到證明;另一種則可能是氧化逆境的發生,從H2O2 (hydrogen peroxide)與MDA (malondiadehyde) 含量之增加可以得到證明。
前處理GSH (reduced form glutathione) 與ASC (ascorbic acid) 能夠減緩鎘誘導根之氧化逆境,並回復根生長之抑制,其主要原因為前處理ASC與GSH可誘導清除過氧化氫之酵素APX (ascorbate peroxidase)、GR (glutathione reductase) 與POD (peroxidase) 之活性增加。
此外,前處理GSH與ASC後,水稻幼苗根之鎘累積量結果不同,以GSH前處理的根累積量比單一鎘處理高,代表GSH除了以提高抗氧化能力之方式減緩氧化逆境,可能影響水稻幼苗根之鎘吸收量。這些結果說明了氯化鎘導致根發生木質化作用,並引發氧化逆境,進而抑制水稻幼苗根之生長。

In this thesis, rice (Oryza sativa L., cv. Taichung Native 1, TN1) seedlings were used to investigate the cadmium-induced growth inhibition of roots.
There were two reasons of growth inhibition of rice seedling roots by cadmium, one is the lignification of roots, it can prove by enhancement of phenylalanine ammonia-lyase (PAL) activity and the accumulation of lignin under cadmium stress. The other reason was cadmium-induced oxidative stress that could be judged, the observed increasing of H2O2 (hydrogen peroxide) and MDA (malondiadehyde).
The main reason for reducing the cadmium-induced oxidative stress and the growth inhibition of root by pre-treatment reduced form glutathione (GSH) or ascorbic acid (ASC) was due to ascorbate peroxidase, glutathione reductase and peroxidase.
In addition, pretreatments GSH and ASC accumulated different cadmium content in root. This data showed that GSH might not only enhance antioxidant ability but also affect the uptake of cadmium in root. However, ASC was certainly increased antioxidant capacity. These results indicated that the cadmium induced lignification of root, and lead to oxidative stress, thereby inhibiting the growth of rice seedling roots.
URI: http://hdl.handle.net/11455/36799
其他識別: U0005-1908201108003400
Appears in Collections:農藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.