Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36809
標題: 秈稻IR64和稉稻TNG67耐旱性差異及耐旱機制中脯氨酸累積與離層酸之關係
Difference of drought tolerance between Indica-type IR64 and Japonica-type rice and the relationship betweenaccumulation and abscisic acid in tolerance mechanism
作者: 鄭至涵
Cheng, Chih-Han
關鍵字: proline;脯氨酸;ABA;drought tolerance;P5CS;Indica-type rice;離層酸;耐旱;秈稻
出版社: 農藝學系所
引用: 許育嘉、古新梅、王強生。2005。轉位子在水稻功能性基因分離上之應用。科學農業 53:105-116。 陳治官、黃真生。1984。疊氮化鈉對水稻台農67號之誘變效應。中華農業研究 33:345-353。 Abebe, T., A. C. Guenzi, B. Martin, and J. C. Cushman. 2003. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131:1-8. Abernethy, G. A., and M. T. McManus. 1998. Biochemical responses to an imposed water deficit in mature leaf tissue of Festuca arundinacea. Environ. Exp. Bot. 40:17-28. Arnold, W. R. 1979. Fluridone - A new aquatic herbicide. Aquat. Plant Manage. 17:30-33. Asher, C. J., and P. O. Ozanne. Root growth in seedlings of annual. Plant Soil 24:423-436. Awan, M. A., C. F. Konzak, J. N. Rutger, and A. R. Nilan. 1980. Mutagenic effects of sodium azide in rice. Crop Sci. 20:663-668. Babu, R. C., M. S. Pathan, A. Blum, and H. T. Nguyen, 1999. Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Sci. 39:150-158. Boyer, J. S. 1982. Plant productivity and environment. Sci. 218:443-148. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. Castrillo, M., D. Fernandez, A. M. Calcagno, I. Trujillo, and L. Guenni. 2001. Responses of ribulose-1,5-bisphosphate carboxylase, protein content, and stomatal conductance to water deficit in maize, tomato, and bean. Photosynthetica 39:221-226. Chai, T.-T., N.M. Fadzillah, M. Kusnan, and M. Mahmood. 2005. Water stress-induced oxidative damage and antioxidant responses in micropropagated banana plantlets. Biol. Plant. 49:153-156. Chaitanya, K. V., G. K. Rasineni, and A. R. Reddy. 2009. Biochemical responses to drought stress in mulberry (Morus alba L.) : evaluation of proline, glycine betaine and abscisic acid metabolism in five cultivars. Acta. Physiol. Plant 31:437-443. Chen, C., G. L. Wang, Y. X. Qiao, and L. M. Zhang. 2006. The PLB chemical induced mutagenesis and regeneration of Phalaenopsis. J. Nuclear Agri. Sci. 20:99-102. Chinnusamy, V., M. Ohta, S. Kanrar, B. H. Lee, X. Hong, M. Agarwal, and J.-K. Zhu. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Dev. 17:1043-1054. Coffman, W. R., and T. R. Hargrove. 1989. Modern rice varieties as a possible factor in production variability. In:Variability in grain yield: implications for agricultural research and policy in developing countries. pp. 133-146. Costa, França, M. G., A. T. Pham Thi, C. Pimentel, R. O Pereyra Rossiello, Y. Zuily-Fodil, and D. Laffray. 2000. Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ. Exp. Bot. 43:227-237. Delauney, A. J., and D. P. S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4:215-223. Delory, G. E., and E. J. King. 1945. A sodium carbonate-bicarbonate buffer for alkaline phosphatases. Biochem. J. 39:245. Demiral, T., and İ. Türkan. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53:247-257. Demirevska, K., L. Simova-Stoilova, V. Vassileva, and U. Feller. 2008. Rubisco and some chaperone protein responses to water stress and rewatering at early seedling growth of drought sensitive and tolerant wheat varieties. Plant Growth Regul. 56:97-106. De Ronde, J. A., R. N. Laurie, T. Caetano, M. M. Greyling, and I. Kerepesi. 2004. Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica 138:123-132. Fu, F. L., W. C. Li, T. Z. Rong, G. T. Pan, and D. F. Tan. 2005. Drought tolerant and male sterile material screening from maize callus mutated by γ-ray and sodium azide. Acta Agri. Nucleatae Sinica 19:356-359. Fujii, H., V. Chinnusamy, A. Rodrigues, S. Rubio, R. Antoni, S. Y. Park, S. R. Cutler, J. Sheen, P. L. Rodriguez, and J. K. Zhu. 2009a. In vitro reconstitution of an abscisic acid signaling pathway. Nature 462:660-664. Fujii, H., and J. K. Zhu. 2009b. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth reproduction and stress. Proc. Natl. Acad. Sci. U.S.A. 106:8380-8385. Fujita, T., A. Maggio, M. García-Ríos, C. Stauffacher, R. A. Bressan, and L. N. Csonka. 2003. Identification of regions of the tomato γ-glutamyl kinase that are involved in allosteric regulation by proline. J. Biol. Chem. 278:14203-14210. Fujita, Y., M. Fujita, R. Satoh, K. Maruyama, M. M. Parvez, M. Seki, K. Hiratsu, M. Ohme-Takag, K. Shinozaki, and K. Yamaguchi-Shinozakia. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470-3488. Fujita, Y., K. Nakashima, T. Yoshida, T. Katagiri, S. Kidokoro, N. Kanamori, T. Umezawa, M. Fujita, K. Maruyama, K. Ishiyama, M. Kobayashi, S. Nakasone, K. Yamada, T. Ito, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2009. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50:2123-2132. Fukai, S., and M. Cooper. 1995. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Res. 40:67-86. Furihata, T., K. Maruyama, Y. Fujita, T. Umezawa, R. Yoshida, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2006. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. U.S.A. 103:1988-1993. Gao, M. W., Q. H. Cai, and Z.Q. Liang. 1992. In vitro culture of hybrid indica rice combined with mutagenesis. Plant Breed. 108:104-110. García-Ríos, M., T. Fujita, P. C. LaRosa, , R. D. Locy,J. M. Clithero, R. A. Bressan, and L. N. Csonka. 1997. Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase. Proc. Natl. Acad. Sci. USA. 94:8249-8254. Gaul, H. 1959. Determination of the suitable radiation does in mutation experiments. Proc. 2nd Conger. European association for research on plant breeding, Cologne, pp. 65-69. Hasegawa, H., and M. Inoue. 1980. Effects of sodium azide on seedling injury and chlorophyll mutation in rice. Japan. J. Breed. 30:301-308. Hien, D. T., M. Jacobs, G. Angenon, C. Hermans, T. T. Thu, L. V. Son, and N. H. Roosens. 2003. Proline accumulation and P5CS gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Sci. 165:1059-1068. Hong, Z., K. Lakkineni, Z. Zhang, and D. P. S. Verma. 2000. Removal of feedback inhibition of P5CS results in increased proline. Plant Physiol. 122:1129-1136. Hsu, S. Y., Y. T. Hsu, and C. H. Kao. 2003. The effect of polyethylene glycol on proline accumulation in rice leaves. Biol. Plant. 46:73-78. Hu, C. A., A. J. Delauney, and D. P. S. Verma. 1992. A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. U.S.A. 89:9354-9358. Huang, A. H. C., and A. J. Cavalieri. 1979. Proline oxidase and water stress-induced proline accumulation in spinach leaves. Plant Physiol. 63:531-535. Igarashi, Y., Y. Yoshiba, Y. Sanada, K. Yamaguchi-Shinozaki, K.Wada, and K. Shinozaki. 1997. Characterization of the gene for P5CS and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol. Biol. 33:857-865. Kaneda, C. 1986. Rice breeding for extremely higher yielding ability by Japonica-Indica hybridization. Jpn. Agric. Res. Q. 19:235-240. Kishor, P. B. K., Z. L. Hong, G. H. Miao, C. A. Hu, and D. P. S. Verma. 1995. Overexpression of Δ-pyrrolin-5-carboxylate synthtase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108:1887-1894. Kowalczyk-Schröder, S., and G. Sandmann. 1992. Interference of fluridone with the desaturation of phytoene by membranes of the cyanobacterium Aphanocapsa. Pestici. Biochem. Physiol. 42:7-12. Lee, H., L. Xiong, Z. Gong, M. Ishitani, B. Stevenson, and J.-K. Zhu. 2001. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev. 15:912-24. LeRudulier, D., A. R. Strom, A. M. Dandekar, L. T. Smith, and R. C. Valentine. 1984. Molecular biology of osmoregulation. Sci. 224:1064-1068. Lilley, J. M., and S. Fukai. 1994a. Effect of timing and severity of water deficit on four diverse rice cultivars. I. Rooting patterns and soil water extraction. Field Crops Res. 37:205-214. Lilley, J. M., and S. Fukai. 1994b. Effect of timing and severity of water deficit on four diverse rice cultivars. II. Physiological responses to soil water deficit. Field Crops Res. 37:215-223. Lilley, J. M., and S. Fukai. 1994c. Effect of timing and severity of water deficit on four diverse rice cultivars. III. Phenological development, crop growth and grain yield. Field Crops Res. 37:225-234. Liu, Q., M. Kasuga, Y. Sakuma, H. Abe, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391-406. Lutts, S., V. Majerus, and J. M. Kinet. 1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Planta. 105:450-458. Ma, L., E. Zhou, L. Gao, X. Mao, R. Zhou, and J. Jia. 2008. Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). South African J. Bot. 74:705-712. Ma, Y., I. Szostkiewicz, A. Korte, D. Moes, Y. Yang, A. Christmann, and E. Gril. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Sci. 324:1064-1068. Mambani, B., and R. Lal. 1983. Response of upland rice varieties to drought stress II. Screening rice varieties by means of variable moisture regimes along a toposequence. Plant Soil 73:73-94. Melcher, K., L. M. Ng, X. E. Zhou, F.F. Soon, Y. Xu, K. M. Suino-Powell, S. Y. Park, J. J. Weiner, H. Fujii, V.Chinnusamy, A. Kovach, J. Li, Y. Wang, J. Li, F. C. Peterson, D. R. Jensen, E. L. Yong, B. F. Volkman, S. R. Cutler, J. K. Zhu., and H. E. Xu. 2009. Agate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602-608. Michel, B. E., O. K. Wiggins, and W. H. Outlaw. 1983. A guide to establishing water potential of aqueous two-phase solutions (polyethylene glycol plus dextran) by amendment with mannitol. Plant Physiol. 72:60-65. Moons, A., C. Bauw, E. Prinsen, M. Van Montagu, and D. Van Der Straeten. 1995. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol. 107:177-186. Morishima, H., K. Hinata, and H. I. Oka. 1963. Comparison of modes of evolution of cultivated forms from two wild rice species, Oryza breviligulata and O. perennis. Evolution 17:170-181. Nakagahra, M. 1978. The differentiation, classification and center of genetic diversity of cultivated rice (Oryza sativa L.) by isozyme analysis. Trop. Agric. Res. 11:77-82. Nakashima, K., Y. Ito, and K. Yamaguchi-Shinozaki. 2006. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol. Plant. 126: 62-71. Nakashima, K., Y. Ito, and K. Yamaguchi-Shinozaki. 2009. Transcriptional regulatory networks in response to abiotic stresses in arabidopsis and grasses. Plant Physiol. 149:88-95. Nanjo T., M. Kobayashi, Y. Yoshiba, Y. Kakubari, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461:205-210. Oka, H. I. 1974. Experimental studies on the origin of cultivated rice. Genetics 78:475-486. Olsen, O., X. Wang, and D. Von Wettstein. 1993. Sodium azide mutagenesis: preferential generation of A.T-->G.C transitions in the barley Ant18 gene. Proc. Natl. Acad. Sci. U.S.A. 90:8043-8047. Parida, A. K., V. S. Dagaonkar, M. S. Phalak, and L. P. Aurangabadkar. 2008. Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta. Physiol. Plant 30:619-627. Park, S. Y., P. Fung, N. Nishimura, D. R. Jensen, H. Fujii, Y . Zhao, S. Lumba, J. Santiago, A. Rodrigues, T. F. Chow, S. E. Alfred, D. Bonetta, R. Finkelstein, N. J. Provart, D. Desveaux, P. L. Rodriguez, P. McCourt, J.-K. Zhu, J. I. Schroeder, B. F. Volkman, and S. R. Cutler. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of start proteins. Sci. 324:1068-1071 . Parry, M. A. J., P. J. Andralojc, S. Khan, P. J. Lea, and A. J. Keys. 2002. Rubisco activity: effects of drought stress. Ann. Bot. 89:833-839. Puckridge, D. W., and J. C. O’Toole. 1980. Dry matter and grain production of rice, using aline source sprinkler in drought studies. Field Crops Res. 3:303-319. Perales, L., V. Arbona, A. Gómez-Cadenas, M.-J. Cornejo, A. Sanz. 2005. A relationship between tolerance to dehydration of rice cell linesand ability for ABA synthesis under stress. Plant Physiol. Biochem. 43 786-792. , Raymond, M. J., and N. Smirnoff. 2002. Proline metabolism and transport in maize seedlings at low water potential. Ann. Bot. 89:813-823. Roosens, N. H., R. Willem, Y. Li, I. Verbruggen, M. Biesemans, and M. Jacobs. 1999. Proline metabolism in the wild-type and in a salt-tolerant mutant of nicotiana plumbaginifolia studied by 13C-nuclear magnetic resonance imaging. Plant Physiol. 121:1281-1290. Saeedipour, S. 2011. Is salinity tolerance of rice lines related to endogenous ABA level or to the cellular ability for ABA synthesis under stress? J. Am. Sci. 7:518-524. Sam, O., E. Jerez, J. Dell''amicc, and M.C. Ruiz-Sanchez. 2000. Water stress induced changes in anatomy of tomato leaf epidermis. Biol. Plant. 43:275-277. Sarma, N. P.,A. Patnaik, and P. J. Jachuck. 1979. Azide mutagenesis in rice - Effect of concentration and soaking time on induced chlorophyll mutation frequency. Environ. Exp. Bot. 19:117-121. Schenk, H. J., and R. B. Jackson. 2002. Rooting depths, lateral root spreads and below-ground / above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90:480-494. Second, G. 1982. Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jpn. J. Genet. 57:25-57. Sharp, R. E., W. K. Silk, and T. C. Hsiao. 1988. Growth of the maize primary root at low water potentials I. Spatial distribution of expansive growth. Plant Physiol. 87:50-57. Sharp R. E., Y. Wu, G. S. Voetberg, I. N. Saab, M. E. LeNoble. 1994. Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. J. Exp. Bot. 45: 1743–1751 Shinozak K., and K. Yamaguchi-Shinozaki. 2007. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58:221-227. Skriver, K., and J. Mundy. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503-512. Sripinyowanich, S., P. Klomsakul, B. Boonburapong, T. Bangyeekhun, T. Asami, H. Gu, T. Buaboocha, and S. Chadchawan. 2010. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ. Exp. Bot. doi:10.1016/j.envexpbot.2010.01.009. Su, J., and R. Wu. 2004. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci. 166:941-948. Székely, G., E. Ábrahám, Á. Cséplö, G. Rigó, L. Zsigmond, J. Csiszár, F. Ayaydin, N. Strizhov, J. Jásik, E. Schmelzer, C. Koncz, and László Szabados. 2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 53:11-28. Szabados, L., and A. Savouré. 2009. Proline: a multifunctional amino acid. Trends Plant Sci. 15: 89–97. Tezara, W., V. J. Mitchell, S. D. Driscol,l and D. W. Lawlor. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 1401:914-917. Türkan, Í., M. Bor, F. Özdemir, and H. Koca. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168:223-231. Umemoto, T., M. Yano, H. Satoh, A. Shomura, and Y. Nakamura. 2002. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor. Appl. Genet. 104:1-8. Uno, Y., T. Furihata, H. Abe, R. Yoshida, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. U.S.A. 97:11632-11637. Verslues, P. E., and E. A. Bray. 2006. Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J. Exp. Bot. 57:201-212. Wang, C. S., T. H. Tseng, and C. Y. Lin. 2002. Rice biotech research at the Taiwan Agricultural Research Institute. APBN 6:950-956. Wu, Y., W. G. Spollen, R. E. Sharp, P. R. Hetherington, and S. C. Fry. 1994. Root growth maintenance at low water potentials. lncreased activity of xyloglucan endotransglycosylase and its possible regulation by abscisic acid. Plant Physiol. 106: 607-61 5. Xiong, L., B. H. Lee, M. Ishitani, H. Lee, C. Zhang, and J.-K. Zhu. 2001. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev. 15:1971-1984. Xiong L., R.-G. Wang, G. Mao, and J. M. Koczan. 2006. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol. 142:1065-1074. Yamada, M., H. Morishita, K.Urano, N. Shiozaki, K. Yamaguchi-Shinozaki, K. Shinozaki, and Y. Yoshiba. 2005. Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot. 56:1975-1981. Yamaguchi-Shinozaki K., and K. Shinozaki. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57:781-803. Yang,C.-W., J. W. Wang, and C. H. Kao. 2000. The relation between accumulation of abscisic acid and proline in detached rice leaves. Biol. Plant. 43:301-304. Yoshiba, Y., T. Kiyosue, K. Nakashima, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38:1095-1102. Yoshida, T., Y. Fujita, H. Sayama, S. Kidokoro, K. Maruyama, J. Mizoi, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 61:672-685. Zhang, J., and W. J. Davies. 1987. Increased synthesis of ABA in partially dehydrated root tips and ABA transport from roots to leaves. J. Exp. Bot. 38:2015-2023. Zhang, C.-S., Q. Lu, and D. P. S. Verma. 1995. Removal of feedback inhibition of P5CS, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J. Biol. Chem. 270:20491-20496. Zhu, X., Y. Jing, G. Chen, S. Wang, and C. Zhang. 2003. Solute levels and osmoregulatory enzyme activities in reed plants adapted to drought and saline habitats. Plant Growth Regul. 41:165-172.
摘要: 
本試驗首先以秈稻IR64品種建立耐旱篩選系統,於不同生育期進行乾旱處理,發現不同發育階段均隨滲透潛勢降低而抑制生長,其中胚芽鞘伸長抑制對乾旱最為敏感,並且和幼苗傷害指數的乾旱反應呈現二次曲線的關係,可作為生育早期篩選耐旱性的指標。本試驗以IR64 M1和M2世代突變庫進行篩選,發現似乎2 mM疊氮化鈉誘變選出較多乾旱感性突變體,5 mM則選出較多乾旱耐性突變體,連續篩選結果顯示在M3和M4世代中耐旱性之變異性大,且尚未穩定。
秈稻與稉稻係起源於不同地區,對水分的需求亦不同,本試驗再以秈稻IR64和稉稻TNG67進行耐旱性差異之研究,根據此兩型水稻的胚芽鞘伸長及幼苗傷害指數調查結果顯示,IR64較TNG67耐旱。進一步分析脯氨酸含量發現,IR64根部可於-0.2 MPa PEG處理3天後顯著累積脯氨酸,其合成酵素P5CS也於PEG處理後逐漸增加,同時降解酵素PDH的活性則逐漸降低;相反地,TNG67於PEG處理後脯氨酸含量無明顯增加,P5CS活性亦無提升,且PDH卻不減反增。另外,外施植物荷爾蒙ABA後發現,可誘導脯氨酸累積,與PEG處理的結果相似。因此推論,乾旱下經由ABA誘導脯氨酸累積,以助於提升水稻之耐旱性。

In order to screen drought-sensitive and -tolerant rice mutants, rice growth responses to drought at different development stages were studied. Experimental results showed that rice growth was inhibited with decreasing water potential, and the coleoptile elongation had higher sensitivity to and proportionally inhibited by water stress, which was similar to the response of injury index of rice seedlings. After serial screening of drought-S and -T mutants, which were mutated from Indica-type rice var. IR64 by sodium azide, it seemed that more T-mutants were observed from 5 mM sodium azide mutation. However, drought tolerance trait is still variable in M3 and M4 generations. Due to the significant difference of drought-tolerance between Indica- and Japonica-type rice plants, based on the coleoptile elongation inhibition and injury index of seedlings, the role of osmoregulation through proline accumulation in roots played in drought tolerance was explored. Both an increased activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and a decreased activity of proline dehydrogenase (PDH) in tolerant Indica-type IR64, confirmed the osmoregulation. In addition, that proline accumulation in roots thought ABA mediation under water stress was also proven by the exogenous application of ABA.
URI: http://hdl.handle.net/11455/36809
其他識別: U0005-2208201113293200
Appears in Collections:農藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.