Please use this identifier to cite or link to this item:
標題: 添加金屬於中孔洞沸石與介金屬觸媒:製備,特性分析,及應用
Metal Modified MCM-41 and Bimetallic Catalysts: Synthesis, Characterization, and Applications.
作者: 童婉貞
Tung, Wan-Chen
關鍵字: Mesoporous materials;中孔洞沸石;Carbon Nanotube;Raman spectroscopy;Chemical vapor deposition;Hydrogen storage;奈米碳管;拉曼光譜儀;化學氣相沈積;儲氫
出版社: 化學工程學系所
引用: 1. 陳嘉銘, 奈米鎂-鎳合金於加氫/脫氫反應的應用:PEG胺化反應及奈米碳管的成長, 化學工程學系. 2004, 國立中興大學: 台中. p. 33. 2. Kresge, C.T., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992. 359: p. 710-712. 3. Beck, J.S., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Journal of American Ceramic Society, 1992. 114: p. 10834-10843. 4. Chen, C.Y., et al., Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Materials, 1993. 2: p. 27-34. 5. Monnier, A., et al., Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures Science, 1993. 261: p. 1299-1303. 6. Firouzi, A., et al., Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science, 1995. 267: p. 1138. 7. Hartmann, M., A. Poppl, and L. Kevan, Formation and stability of Ni(I) Ions in MCM-41 mesoporous molecular sieves. Journal of Physical and Chemistry, 1995. 99: p. 17494-17496. 8. Hartmann, M., A. Poppl, and L. Kevan, Ethylene dimerization and butene isomerization in nickel-containing MCM-41 and AlMCM-41 mesoporous molecular sieves: an electron spin resonance and gas chromatography study. Journal of Physical Chemistry 1996. 100: p. 9906-9910. 9. Ryoo, R., et al., Preparation of nanosize Pt clusters using Ion-exchange of Pt(NH3)(4)(2+) inside mesoporous channel of MCM-41. Catalysis Letter, 1996. 37: p. 29-33. 10. Ko, C.H. and R. Ryoo, Imaging the channels in mesoporous molecular sieves with platinum. Chemcal Communications, 1996. 21: p. 2467. 11. Aronson, B.J., C.F. Blanford, and A. Stein, Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: synthesis and structural characterization. Chemistry of Materials, 1997. 9: p. 2842-2851. 12. Honma, I., H. Sasabe, and H.S. Zhou, Nanophase and nanocomposite materials II. Mater. Res. Soc. Symp. Proc., 1997. 457: p. 525. 13. Deo, G., I.E. Wachs, and J. Haber., Critical Reviews in Surface Chemistry, 1994. 4: p. 141-187. 14. Wachs, I.E. and B.M. Weckhuysen, Structure and reactivity of surface vanadium oxide species on oxide supports. Applied Catalysis A: General, 1997. 157: p. 67. 15. Das, N., et al., Bonding states of surface vanadium oxide phases on silica : Structural characterization by 51V-NMR and Raman spectroscopy. Journal of Physical and Chemitry, 1993. 97 p. 8240-8243. 16. Wang, C.B., G. Deo, and I.E. Wachs, Characterization of vanadia sites in v-silicalite, vanadia-silica cogel, and silica-supported vanadia catalysts: x-ray powder diffraction, raman spectroscopy, solid-state 51V NMR, temperature-programmed reduction, and methanol oxidation studies. Journa of catalysis, 1998. 178: p. 640-648. 17. Gao, X., et al., Structural and reactivity properties of Nb-MCM-41: comparison with that of highly dispersed Nb2O5/SiO2 Catalysts. Journal of Catalysis, 2001. 203: p. 18-24. 18. Chen, Y., et al., Supported tantalum oxide catalysts: synthesis, characterization and methanol oxidation chemical probe. Journal of Physical and Chemitry B, 2003. 107: p. 5243-5250. 19. 潘宗冀, 奈米級被擔持金屬氧化物觸媒之氧化反應研究, 化學工程學系. 2006, 國立中興大學: 台中. p. 21. 20. 黃晁熙, 不同過渡金屬添加於矽酸鹽觸媒之結構與氧化反應研究, 化學工程學系. 2002, 國立中興大學. 21. Welch, L.M., L.J. Croce, and H.F. Christmann, Hydrocarbon Process, 1978. 57: p. 131. 22. Cafani, F. and F. Trifiro, Applied Catalysis A: General, 1992. 88: p. 115-135. 23. Mamedov, E.A. and V.C. Corberan, Oxidative dehydrogenation of lower vanadium oxide-based catalysts. The present state of the art and outlooks. Applied Catalysis A: General, 1995. 127: p. 1-40. 24. Chen, Y. and I.E. Wachs, Tantalum oxide-supported metal oxide (Re2O7, CrO3, MoO3, WO3,V2O5, and Nb2O5) catalysts: synthesis, raman characterization and chemically probed by methanol oxidation. Journal of Catalysis, 2003. 217: p. 46. 25. Chen, Y., et al., Supported tantalum oxide catalysts: synthesis, physical characterization, and methanol oxidation chemical probe reaction. Journal of Physical and Chemitry, 2003. 107: p. 5243-5250. 26. Briand, L.E., A.M. Hirt, and I.E. Wachs, Quantitative determination of the number of surface active sites and the turnover frequencies for methanol oxidation over metal oxide catalysts: application to bulk metal molybdates and pure metal oxide catalysts. Journal of Catalysis, 2001. 202: p. 268-278. 27. Burcham, L.J., M. Badlani, and I.E. Wachs, The origin of the ligand effect in metal oxide catalysts: novel fixed-bed in situInfrared and kinetic studies during methanol oxidation. Journal of Catalysis, 2001. 203: p. 104-121. 28. Li, J.L., et al., A new silver-containing ceramics for catalytic oxidation of methanol to formaldehyde. Materials letters, 2000. 44: p. 233. 29. Waterhouse, G.I.N., G.A. Bowmaker, and J.B. Metson, Mechanism and Active Sites for the Partial Oxidation of Methanol to Formadehyde over An Electrolytic Silver Catalyst. Applied of Catalysis A, 2004. 265: p. 85. 30. Mukhopadhyay, K., et al., Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition CCVD/method. Chemical Physics Letters, 1999. 303: p. 117-124. 31. Zhang, A., et al., A novel method of varying the diameter of carbon nanotubes formed on an Fe-supported Y zeolite catalyst. Microporous and Mesoporous Materials, 1999. 29: p. 383-388. 32. Jia, J., et al., Carbon fibers prepared by pyrolysis of methane over Ni/MCM-41 catalyst. Microporous and Mesoporous Materials, 2003. 57 p. 283-289. 33. Somanathan, T., A. Pandurangan, and D. Sathiyamoorthy, Catalytic influence of mesoporous Co-MCM-41 molecular sieves for the synthesis of SWNTs via CVD method. Journal of Molecular Catalysis A: Chemical, 2006. 256: p. 193-199. 34. Dai, H., et al., Single-Wall Nanotubes Produced by Metal-Catalyzed Disproportionation of Carbon Monoxide. Chemical Physics Letters, 1996. 260: p. 471-475. 35. Urban, M., et al., Production of carbon nanotubes inside the pores of mesoporous silicates. Chemical Physics Letters, 2002. 359 p. 95-100. 36. Kroto, H.W., et al., C60: buckminster fullerene. Nature, 1985. 318: p. 162. 37. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56-58. 38. Bethune, D.S., et al., Cobalt- catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993. 363: p. 605-607. 39. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363: p. 603-605. 40. Saito, R., et al., Electronic structure of chiral graphene tubules. Applied Physics Letters, 1992. 60: p. 2204. 41. Peng, H.Y., et al., Smallest diameter carbon nanotubes. Applied Physics Letters, 2000. 77: p. 2831. 42. Qin, L.C., et al., The smallest carbon nanotube. Nature, 2000. 408: p. 50. 43. 44. 45. Jung, M., et al., Growth of carbon nanotues by chemical vapordeposition. Dianond and Related Materials, 2001. 10: p. 1235. 46. Kaatz, F.H., et al., Diameter control and emission properties of carbon nanotubes using chemical vapor deposition. Materials Science and Engineering C, 2004. 23: p. 141. 47. Cui, H., et al., Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition. Chemical Physics Letters 2003. 374: p. 222-228. 48. Thostenson, E.T., Z. Ren, and T.W. Chou, Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review. Composites Science and Technology, 2001. 61: p. 1899. 49. Yao, Z., et al., Carbon nanotubeintramolecular junctions. Nature, 1998. 402: p. 273. 50. Liu, C., et al., Semi-continuous synthesis single-walled carbon nanotubes by a hydrogen arc discharage method. Carbon, 1995. 37(11): p. 1865-1868. 51. Ebbessen, T.W. and P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature, 1992. 358: p. 220-222. 52. Saito, Y., et al., Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. Journal of Applied Physicals, 1996. 80: p. 3062-3067. 53. Guo, T., et al., Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters, 1995. 243: p. 49-54. 54. Collins, P.G. and P. Avouris, Nanotubes for electronics. Scientific American, 2000. 283: p. 62-69. 55. Liu, J., et al., Fullerene crop circles. Nature, 1997. 385: p. 780-781. 56. Birkett, P.R., et al., Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter. Chemical Physics Letters, 1997. 281: p. 111-114. 57. Rodriguez, N.M., M.S. Kim, and R.T.K. Baker, Carbon nanofibers: a unique catalyst support medium. Journal of Physical Chemistry, 1994. 98(50): p. 13108-13111. 58. Ren, Z.F., et al., Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science, 1998. 282: p. 1105-1107. 59. Bower, C., et al., Plasma-induced alignment of carbon nanotubes. Applied Physics Letters, 2000. 77: p. 830-832. 60. Journet, C., et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997. 388: p. 756-768. 61. Sen, R., A. Govindaraj, and C.N.R. Rao, Carbon nanotubes by the metallocene route. Chemical Physics Letters, 1997. 267: p. 276-280. 62. Fan, S., et al., Self-Oriented Regular Arrays of Carbon Nanotubes and their Field Emission Properties. Science, 1999. 283: p. 512-514. 63. Lee, C.J. and J. Park, Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Applied Physics Letters, 2000. 77: p. 3397-3399. 64. 王世敏, 許祖勛和傅晶, 奈米材料製備技術. 2001, 北京: 化學工業出版社. 65. Halperin, W.P., Quantum size effects in metal particles. Review of Modern Physics, 1986. 58: p. 532. 66. Ball, P. and L. Garwin, Science at the atomic scale. Nature, 1992. 355: p. 761-766. 67. Dawson, W.J., Hydrothermal synthesis of advanced ceramic powders. American Ceramic Society Bulletin, 1988. 67: p. 1673-1678. 68. Morey, G.W., Hydrothermal synthesis. Journal of the American Ceramic Society, 1953. 36: p. 279. 69. Wada, S., T. Suzuki, and T. Noma, Preparation of barium titanate fine particles by hydrothermal method and their characterization. Journal of the Ceramic Society of Japan, 1995. 103: p. 1220. 70. Chittofratt, A. and E. Matijevic, Uniform particles of zinc-oxide of different morphologies. Colloid and Surface, 1990. 48: p. 65. 71. Hernardi, K., et al., Catalytic synthesis of carbon nanotubes using zeolite suppport. Zeolites, 1996. 17: p. 416-423. 72. Kamalakar, G., D.W. Hwang, and L.P. Hwang, Synthesis and characterization of multiwalled carbon nanotubes produced using zeolite Co-beta. ;:. Journal of Material Chemistry, 2002. 12: p. 1819-1823. 73. Diaz, G., et al., Carbon nanotubes prepared by catalytic decomposition of benzene over silica supported cobalt catalysts. . Fullerene Science and Technology, 1998. 6: p. 853-866. 74. Hernardi, K., et al., Carbon nanotubes production over Co/ silica catalysts. Catalysis Letter, 1997. 48: p. 229-238. 75. Hamwi, A., et al., Fluorination of carbon nanotubes. Carbon, 1997. 35: p. 723-728. 76. Colomer, J.F., et al., Large- scale synthesis of single wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical and Physical Letters, 2000. 317: p. 83-89. 77. Tang, S., et al., Control growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chemical and Physical Letters, 2001. 350: p. 19-26. 78. Ning, Y., et al., Bulk production of multi-wall carbon nanotube bundles on sol-gel prepared catalyst. Chemical Physics Letters, 2002. 366: p. 555-560. 79. Soneda, Y., et al. High yield of multiwalled carbon nanotubes from the decomposition of acetylene on Co/Mgo catalyst. in American institue of physics. 2001. 80. Pinheiro, P., et al., Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts. Carbon, 2000. 38: p. 1469-1479. 81. Baker, R.T.K., Catalytic growth of carbon filaments. Carbon, 1989. 27: p. 315-323. 82. Barker, R.T.K., et al., Effect of the surface state of Iron on filamentous carbon formation. Journal of Catalysis, 1982. 77: p. 74-84. 83. Kock, A.J.H.M., et al., iron on filamentous carbon formation. Journal of Catalysis, 1985. 96: p. 468. 84. Baker, R.T.K., J.J. Chludzinski, and N.S. Dudash, The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum. Carbon, 1983. 21: p. 463-468. 85. Baker, R.T.K., M.A. Braber, and P.S. Harris, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. Journal of Catalysis, 1972. 26: p. 51-62. 86. Baird, T., J.R. Fryer, and B. Grant, Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700 ℃. Carbon, 1972. 12: p. 591. 87. Oberlin, A., M. Endo, and T. Koyana, High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition. Journal of Crystal Growth, 1976. 32: p. 335. 88. Tibbetts, G.G., Vapor-grown carbon fibers: Status and prospects. Carbon, 1989. 27: p. 745. 89. Sinnott, S.B., et al., Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters, 1999. 315: p. 25. 90. Kiang, C.-H. and W.A.G. III, Catalytic Effects of Heavy Metals on the Growth of Single-Layer Carbon Nanotubes and nanoparticles. Physical Review Letters 1996. 76: p. 2515-2518. 91. Lee, Y.H., S.G. Kim, and D. Tomanek, Catalytic growth of single-wall carbon nanotubes: an Ab initio study. Physical Review Letters, 1997. 78: p. 2393-2396. 92. Maiti, A., C.J. Brabec, and J. Bernholc, Kinetics of metal-catalyzed growth of single-walled carbon nanotubes. Physical Review B 1997. 55: p. R6097-R6100. 93. Lee, Y.T., et al., Temperature-dependent growth of vertically aligned carbon nanotubes in the range 800-1100℃. Journal of Physical and Chemitry B, 2002. 106: p. 7614-7618. 94. Liu, K., et al., A growth mark method for studying growth mechanism of carbon nanotube arrays. Carbon, 2005. 43: p. 2850-2056. 95. Ni, L., et al., Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts. Carbon, 2006. 44: p. 2265-2272. 96. Park, Y.S., et al., High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon, 2001. 39: p. 655. 97. Tran, N.E. and S.G. Lambrakos, Purification and defect elimination of single-walled carbon nanotubes by the thermal reduction technique. Nanotechnology, 2005. 16: p. 639. 98. Vivekchand, S.R.C., et al., New method of purification of carbon nanotubes based on hydrogen treatment. Journal of Physical Chemistry B, 2004. 108: p. 6935. 99. Weast, R.C., Handbook of Chemistry and Physics. CRC Press. 1976. 100. Tromp, T.K., R.L. Shia, and M. Allen., Potential Environmental Impact of a Hydrogen Economy on the Stratosphere. Science, 2003. 300 p. 1740 -1742. 101. 徐偉竣, 微量鈀添加改善鎂基儲氫材料之性質研究, 材料科學工程學系. 2004, 國立清華大學. 102. Züttel, A., Material for hydrogen storage. Material Today, 2003. 6: p. 24-33. 103. Dillon, A.C., et al., Storage of hydrogen in single walled carbon nanotubes. Nature, 1997. 386: p. 377-379. 104. Darkrim, F.L., P. Malbrunot, and G.P. Tartaglia, Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy, 2002. 27: p. 193-202. 105. Wang, Q. and J.K. Johnson, Optimization of carbon nanotube arrays for hydrogen adsorption. Journal of Physical and Chemitry B, 1999. 103: p. 4809-4813. 106. 陳東瑩, 碳材作為儲氫材料的研究, 電子工程研究所. 2006, 國立清華大學. p. 47. 107. Gupta, B.K., R.S. Tiwari, and O.N. Srivastava, Studies on synthesis and hydrogenation behaviour of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene. Journal of alloys and compounds, 2004. 381: p. 301. 108. Chen, P., et al., High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures Science, 1999. 285: p. 91 - 93. 109. Chen, Y., et al., Hydrogen storage in aligned carbon nanotubes. Applied Physics Letters, 2001. 78: p. 2128-2130. 110. Lee, S.M., K.S. Park, and Y.C. Choi, Hydrogen adsorption and storage in carbon nanotubes. Journal of the American Chemical Society, 2000. 113: p. 209. 111. Yang, R.T., Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon, 2000. 38: p. 623-641. 112. Chong, G., Computer simulations of hydrogen adsorption in single-walled carbon nanotubes. Chemical Journal of Chinese Universities, 2001. 6: p. 958 - 961. 113. Dresselhaus, M.S., K.A. Williams, and P.C. Eklund, Hydrogen adsorption in carbon materials. MRS Bull, 1999. 24: p. 45-50. 114. Wang, Q.Y. and J.K. Johnson, Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. Journal of Chemical Physics, 1999. 110: p. 577-586. 115. Rzepka, M. and P. Lamp, Physisorption of hydrogen on microporous carbon and carbon nanotubes. Journal of Physical and Chemistry B, 1998. 102: p. 10894-10898. 116. Dillon, A.C., T. Gennett, and J.L. Alleman. Carbon nanotube materials for hydrogen storage. in Proceedings of the 2000 US DOE Hydrogen Program Review. 2000. 117. Ye, Y., et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters, 1999. 74: p. 2307-2309. 118. Liu, C., et al., Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. science, 1999. 286: p. 1127-1129. 119. Badzian, A., T. Badzian, and E. Breval, Nanostructured, nitrogen-doped carbon materials for hydrogen storage Thin Solid Film, 2001. 398-389: p. 170-174. 120. Shen, K., et al., The role of carbon nanotube structure in purification and hydrogen adsorption. Carbon, 2004. 42: p. 2315-2322. 121. Zhu, H.W., et al., The effect of surface treatments on hydrogen storage of carbon nanotubes. Journal of Materials Science Letters, 2000. 19: p. 1237-1239. 122. Liu, F., et al., Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon, 2003. 41: p. 2527. 123. Takagi, H., et al., Adsorptive hydrogen storage in carbon and porous materials. Materials Science and Engineering B, 2004. 108: p. 143. 124. Lueking, A. and R.T. Yang, Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage. Journal of Catalysis 2002. 206: p. 165-168. 125. Kim, B.J., Y.S. Lee, and S.J. Park, Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors. Journal of Colloid and Interface Science, 2008. 318: p. 530-533. 126. Chen, C.H. and C.C. Huang, Enhancement of hydrogen spillover onto carbon nanotubes with defect feature. Microporous and Mesoporous Materials, 2008. 109 p. 549-559. 127. 顏維廷, 金屬矽酸鹽觸媒於丙烷氧化反應之應用, 化學工程學系. 2001, 國立中興大學. 128. Li, Y. and R.T. Yang, Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. Journal of the American Chemical Society, 2006. 128: p. 8136-8137. 129. Jr., A.J.L., G. Qi, and R.T. Yang, Hydrogen Storage in Nanostructured Carbons by Spillover: Bridge-Building Enhancement. Langmuir, 2005. 21: p. 11418-11424. 130. Lueking, A.D. and R.T. Yang, Hydrogen spillover to enhance hydrogen storage—studyof the effect of carbon physicochemical properties. Applied Catalysis A: General, 2004. 265: p. 259-268. 131. 陳力俊, 材料電子顯微鏡學. 1994: 科儀叢書. 132. 陳家全, 李家維和楊瑞森, 生物電子顯微鏡學, 貴儀中心. 1991. 133. 林智仁, 材料分析技術專題,. 工業材料雜誌, 2002. 181: p. 94. 134. 許樹恩和吳泰伯, X光繞射原理與材料結構分析. 1993: 國材料科學學會. 135. Ertl, G., H. Knözinger, and J. Weitkamp, Handbook of HeterogeneousCatalysis. Vol. 3. 1997: Weinheim. 1508. 136. 柯以侃和吳明珠, 儀器分析 (熱分析法). 1999: 文京圖書有限公司. 137. 洪郁婷, 氮化物的奈米結構, 化學工程學系. 2001, 國立臺灣大學. 138. Venter, J.J. and M.A. Vannice, Modifications of a diffuse reflectance cell to allow the characterization of carbon-supported metals by DRIFTS. Applied Spectroscopy, 1988. 42: p. 1096-1103. 139. Delgass, W.N., et al. Spectroscopy in heterogeneous catalysis. in Academic Press. 1979. New York. 140. Jehng, J.M., et al., Structural characteristics and reactivity properties of the tantalum modified mesoporous silicalite (MCM-41) catalysts. Microporous and Mesoporous Materials 2007. 99 p. 299-307. 141. Jun, S., et al., Synthesis of new nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc., 2000. 122: p. 10712-10713. 142. Reddy, K.M., I. Moudrakovski, and A. Sayari, Synthesis of mesoporous vanadium silicate molecular sieve. Journal of the Chemical Society, Chemical Communications 1994: p. 1059-1060. 143. Luan, Z., et al., Synthesis and Spectroscopic Characterization of Vanadosilicate Mesoporous MCM-41 Molecular Sieves. Journal of Physical Chemistry, 1996. 100: p. 19595-19602. 144. Wei, D., et al., Synthesis and characterization of vanadium substituted mesoporous molecular sieves. Journal of Physical Chemistry 1999. 103: p. 2113-2121. 145. Jehng, J.-M., W.-C. Tung, and C.-H. Kuo, The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. Journal of porous material, 2008. 15: p. 43-51. 146. Miecznikowski, A. and J. Hanuza, Infrared and Raman studies of ZSM-5 and silicalite-1 at room, liquid nitrogen and helium temperatures. Zeolites, 1987. 7: p. 249. 147. Brinker, C.J., et al., NMR confirmation of strained ''defects'' in amorphous silica. Journal of Non-Crystalline Solids, 1988. 99: p. 418-428. 148. Morrow, B.A. and A.J. McFarlan, Chemical reactions at silica surfaces. Journal of Non-Crystalline Solids, 1990. 120: p. 61-71. 149. Wachs, I.E., et al., In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions Catalysis Today, 1996. 32: p. 47-55. 150. Baltes, M., et al., Supported tantalum oxide and supported vanadia-tantala mixed oxides:structural characterization and surface properties. Journal of Physical and Chemitry B, 2001. 105: p. 6211-6220. 151. Gao, X., J.M. Jehng, and I.E. Wachs, In situ UV–vis–NIR diffuse reflectance and raman spectroscopic studies of propane oxidation over ZrO2-supported vanadium oxide catalysts Journal of Catalysis, 2002. 209: p. 43-50. 152. Bettahar, M.M., et al., On the. Partial Oxidation of Propane and propylene on mixed oxide catalysts. Applied Catalysis A: General, 1996. 145: p. 1-48. 153. Yang, Y., et al., Growth of carbon nanotubes with metal-loading mesoporous molecular sieves catalysts. Materials Chemistry and Physics, 2003. 82: p. 440-443. 154. Sinha, A.K., D.W. Hwang, and L.P. Hwang, A novel approach to bulk synthesis of carbon nanotubes filed with metal by a catalytic chemical vapor deposition method. Chemical Physics Letters, 2000. 332: p. 45. 155. Delpeux, S., et al., High Yield of Pure Multiwalled Carbon Nanotubes from the Catalytic Decomposition of Acetylene on in Situ Formed Cobalt Nanoparticles Journal of Nanoscience and Nanotechnology, 2002. 2: p. 481-484. 156. Singha, B.K., et al., Growth of multiwalled carbon nanotubes from acetylene over in situ formed Co nanoparticles on MgO support. Solid State Communications, 2006. 139: p. 102-107. 157. Rao, A.M., et al., Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science, 1997. 275: p. 187-191. 158. Egeberg, R.C., et al., Dissociation of CH4 on Ni(111) and Ru(0001). Surface Science, 2002. 497: p. 183-193. 159. Ramsvik, T., et al., Acetylene chemisorption and decomposition on the Co(11_220) single crystal surface. Surface Science, 2002. 499: p. 183-192. 160. Nagakura, S., Study of metallic carbides by electron diffraction part IV. cobalt carbide. Journal of the Physical Society of Japan, 1961. 16(6): p. 1213-1219. 161. Kiang, C.H., et al., Size Effects in Carbon Nanotubes. Physical Review Letters, 1998. 81(9): p. 1869. 162. Shia, Z., et al., Purification of single-wall carbon nanotubes. Solid State Communications, 1999. 112 p. 35-37. 163. Yang, Q., P. Hou, and F. Li, Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes Chemical Physics Letters, 2001. 345: p. 18-24. 164. Klinke, C., J.M. Bonard, and K. Kern, Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes. Physical Review B 2005. 71: p. 035403. 165. Bartsch, K., et al., On the diffusion-controlled growth of multiwalled carbon nanotubes. Journal of Applied Physics 2005. 97: p. 114301-114307. 166. Ducati, C., et al., Temperature selective growth of carbon nanotubes by chemical vapor deposition. Journal of Applied Physics 2002. 92: p. 3299-3303. 167. Kukovitsky, E.F., S.G. L''vov, and N.A. Sainov, VLS-growth of carbon nanotubes from the vapor. Chemical Physics Letters, 2000. 317: p. 65-70. 168. Helveg, S., et al., Atomic-scale imaging of carbon nanofibre growth. Nature, 2004. 427: p. 426-429. 169. Ichihashi, T., et al., In situ observation of carbon-nanopillar tubulization caused by liquid-like iron particles. Physical Review Letters, 2004. 92: p. 215702. 170. Jost, W., Diffusion in solids, liquids, gases. New York: Academic, 1960: p. 470-473. 171. Saito, Y., Nanoparticles and filled nanocapsules. carbon, 1995. 33: p. 979-988.

以表面積與孔洞分析儀(BET)、小角度X光繞射儀(XRD)、紫外可見近紅外光擴散反射光譜儀(UV–vis–NIR DRS)和拉曼光譜儀(Raman)分析Ta-MCM-41觸媒的結構特性。三種氧化鉭的物種會存在於MCM-41:Isolated TaO4的物種在MCM-41的結構中,Isolated TaO4物種在MCM-41的表面和Bulk Ta2O5,而這三種氧化鉭物種的含量則會與鉭的濃度有關。鉭原子會進入Ta-MCM-41產生Isolated TaO4活性基位,Ta-O-Si的鍵結會存在MCM-41的表面或是結構中。Ta-MCM-41對丙烷氧化脫氫和甲醇氧化反應的催化性質,主要是取決於觸媒上不同的表面活性基位。分散良好的活性基位有較佳的氧化催化性質來生產甲醛(HCHO)和甲酸甲酯(MF),bulk Ta2O5只具有酸性基位去生成二甲醚(DME)。Ta–O–Si鍵結的存在對氧化反應具有高活性和選擇性。


化學氣相沈積法,以CoMgO為觸媒催化裂解乙炔製備奈米碳管在溫度範圍由400~700℃。將奈米碳管藉由空氣氧化產生缺陷及開蓋,再利用鹽酸酸洗移除奈米碳管上的觸媒。為了增加奈米碳管的儲氫量,將白金粒子於化學還原法擔持於純化後的奈米碳管,白金粒子具有”hydrogen spillover”的能力可以將氫分子解離成氫原子。以BET來測量其表面積及以體積法在適當壓力及室溫下,來量測其儲氫量。以高解析度穿透式電子顯微鏡(HRTEM)來觀察不同反應溫度的奈米碳管,顯示出不同反應溫度下奈米碳管的結構皆不相同。而奈米碳管的儲氫量與表面積似乎有相關。儲氫應用方面,當反應溫度為500℃所製備的奈米碳管其以重量量測法(Sieverts)儲氫量為1.35wt%,純化後的奈米碳管其儲氫量可達1.5%,Pt擔持於純化後的奈米碳管上,所得的儲氫量可達1.9wt%。

In this thesis, there are three major research parts: 1. Structural characteristics and reactivity properties of the tantalum modified mesoporous silicalite catalysts. 2. The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. 3. Multi-walled carbon nanotubes (MWCNTs) were synthesized by the thermal chemical vapor deposition method (Thermal CVD) using acetylene as carbon source over the CoMgO catalyst for hydrogen storage.

Part I: Ta-MCM-41 catalysts were performed with the methanol oxidation and propane ODH reactions
The structural characteristics of the Ta–MCM-41 catalyst have been investigated by BET measurement, small angle X-ray diffraction, UV–vis–NIR diffuse reflectance spectroscopy (DRS) and Raman spectroscopy techniques. Three types of tantalum oxide species: an isolated TaO4 species in the MCM-41 framework, an isolated surface TaO4 species on the MCM-41 surface, and bulk Ta2O5, can be present individually or coexist on the Ta–MCM-41 catalysts, and its relatively intensity is dependent on the Ta concentration. The local structure of the Ta atoms in the Ta–MCM-41 catalyst forms an isolated active site with the bridging Ta–O–Si bonds on the surface and in the frame structure of MCM-41. The catalytic properties of the Ta–MCM-41 catalysts were chemically probed with propane oxidative dehydrogenation(ODH) and methanol oxidation reactions in order to distinguish the different surface active sites present on the catalyst. Consequently, the well-dispersed isolated active sites exhibit high redox catalytic properties to produce formaldehyde (HCHO) and methyl formate (MF), and bulk Ta2O5 only possesses acid sites to form dimethyl ether (DME). The presence of Ta–O–Si bonds in the catalyst is responsible for the high reactivity/selectivity of the oxidation reactions.

Part II: Growth multi-wall carbon nanotubes over Ni-MCM-41 catalysts
Multi-wall carbon nanotubes (MWCNTs) were grown by thermal chemical vapor deposition (thermal CVD) of CH4 by using Ni-MCM-41 as the catalyst. Methane pyrolysis has been performed in a quartz tube reactor over the catalyst surface to form carbon atoms via dehydrogenation process. The migration and rearrangement of the surface carbon atoms result in the formation of MWCNTs. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to determine the morphologies and structures of CNTs, and Raman spectroscopy was exploited to analyze their purity with the relative intensity between the D-band (Disorder band) in the vicinity of 1350 cm–1 which is characteristic of the sp3 structure and G-band (Graphitic band) in vicinity of 1580 cm–1 which is characteristic of the sp2 structure. In addition, the controlling factors of methane pyrolysis such as the catalyst composition; the reaction temperature, and the methane flow rate on the formation of MWCNTs were investigated to optimize the structure and yield of MWCNTs. SEM/TEM results indicate that the yield of the CNTs increases with increasing Ni concentration in the catalyst. The optimized reaction temperature to grow CNT is located between 640 and 670℃. The uniform and narrow diameter MWCNTs form at lower flow rate of methane (~30 sccm), and non-uniform in diameter and disorder structure of MWCNTs are observed at higher flow rate of methane. This is consistent with Raman analysis that the relative intensity of ID/IG increases with increasing methane flow rate. The formation mechanisms of the MWCNTs on the Ni-MCM-41 catalyst have been determined to be a Tip- Growth mode with a nanoscale catalyst particle capsulated in the tip of the CNT.

Part III: Growth carbon nanotubes by CVD over CoMgO catalysts for hydrogen storage
Multi-walled carbon nanotubes (MWCNTs) were synthesized by the thermal chemical vapor deposition method (Thermal CVD) using acetylene as carbon source over the CoMgO catalyst at different temperatures from 400 to 700℃. The raw CNTs were air oxidized to generate the defects and open the end, and were purified using hydrochloride to remove catalyst. For increasing the hydrogen uptake capacity, we were supported the Platinum nanoparticles on the carbon anotube after purification, which is used to dissociate the hydrogen molecules into atomic hydrogen, onto the surface of CNTs. The specific surface area was estimated from the nitrogen Brunauer- Emmett- Teller (BET) method and the hydrogen uptake capacity of MWCNTs was measured by the volumetric Sieverts method under modestly hydrogen pressure (~1000psi) at ambient temperature. The HRTEM images of growth CNTs under different reaction temperaure. It appears that the CNTs can growth at each temperature with different structure of layers. It seems to be a correlation between the specific surface area and hydrogen uptake for the MWCNTs. For hydrogen storage applications, the highest hydrogen uptake in raw MWCNTs is about 1.35 wt% and in purified CNTs is about 1.5%. The hydrogen uptake in Pt/CNTs is reached to 1.9 wt% at room temperature with 1000 psi pressure.
其他識別: U0005-1408200803005200
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.