Please use this identifier to cite or link to this item:
標題: 統計實驗法應用於染料敏化太陽能電池的最佳化
Statistical Experimental Strategies Approach to Optimization of Dye-Sensitized Solar Cells
作者: 林俐瑩
Lin, Li-Ying
關鍵字: Dye-Sensitized Solar Cel;統計實驗法;Statistical Experimental Strategies;染料敏化太陽能電池
出版社: 化學工程學系所
引用: 第六章 參考文獻 [1] 工業材料 國內太陽光電發展可期 郭禮青 203 期137-142. [2] M. Grätzel, “Photoelectrochemical cells”, Nature, 414, 338, (2001). [3] 莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 第一章、第二章, 民86. [4] M. Grätzel, “Photoelectrochemical cells” Nature 2001(414) 338-344. [5] M. Grätzel, “Powering the planet” Nature 2000(403) 363. [6] 楊素華、蔡泰成, “太陽能電池篇”, 科學發展雜誌, 2005年6月, 390期. [7] Frank Hurd and Robert Livingston, “The quantum yields of some dye-sensitized photooxidations” J. Phys. Chem. 1940(44) 865-873 . [8] Gerald Oster, Judith S. Bellin, Robert W. Kimball, Malcolm E. Schrader, “Dye-sensitized photooxidation” J. Am. Chem. Soc. 1959(81) 5095-5099. [9] S. Chaberek, A. Shepp and R. J. Allen, “Dye-Sensitized Photopolymerization Processes. I.” J. Phys. Chem. 1965(69) 641-647 . [10] S. Chaberek, A. Shepp and R. J. Allen, “Dye-Sensitized Photopolymerization Processes. II.” J. Phys. Chem. 1965(69) 647-656. [11] S. Chaberek, A. Shepp and R. J. Allen, “Dye-Sensitized Photopolymerization Processes. III.” J. Phys. Chem. 1965(69) 2834-2841. [12] S. Chaberek, A. Shepp and R. J. Allen, “Dye-Sensitized Photopolymerization Processes. IV.” J. Phys. Chem. 1965(69) 2842-2848 . [13] Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. I” J. Am. Chem. Soc. 1967(89) 5455-5456 . [14] Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. II” J. Am. Chem. Soc. 1967(89) 5456-5457. [15] 萬海保,曹立新,王麗穎,曾廣賦,席時權, “染料敏化的TiO2納米晶多孔膜的性質及其光電轉換” 化學通報 1999(6). [16] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide/aqueous electrolyte/platinum photocell” Nature 1976(261) 402. [17] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 1991(353) 737-740. [18] 蘇昱安, “利用低壓平板火焰法成長奈米級二氧化鈦薄膜於染料敏化太陽能電池之研究”, 國立東華大學材料科學與工程學系碩士論文,(2006). [19] G.P. Smestad, M. Gratzel, M. J. Chem. Educ. 1998, 75, 752-756. [20] M. Grätzel﹐J. Photochem. and Photobio. A:Chem. 2004﹐164﹐3–14. [21] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2053, (2000). [22] Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core”, J. Phys. Chem. B, 107, 1977, (2003). [23] A. Hagfeldt, M. Grätzel, “Light Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev. 95, 49, (1995). [24] A. Fujishima, K. Honda, Nature 238(1972)37. [25] Ulrike D. “The surface science of titanium dioxide” Surf. Sci. Rep. 48, 53, (2003). [26] Che-Hsin Yang, Chao-Chen Yang, Journal of CHEN-MIN college 6(June 2002)1. [27] M. A. Fox, M. Y. Dulay, “Heterogeneous Photocatalysis” Chem. Rev. 1993(93) 341-357. [28] A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results” Chem. Rev. 1995(95) 735-758. [29] M. R. Hoffmann, S. T. Martin, W. Choi et al., “Environmental Applications of Semiconductor Photocatalysis” Chem. Rev. 1995(95) 69-96. [30] P. Serp, P. Kalck, R. Feurer, “Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials” Chem. Rev. 2002(102) 3085-3128. [31] K.-I. Iuchi, Y. Ohko, T. Tatsuma, A. Fujishima, “Cathode-Separated TiO2 Photocatalysts Applicable to a Photochromic Device Responsive to Backside Illumination” Chem. Mater. 2004(16) 1165-1167. [32] Y. Ohko, K. Hashimoto, and A. Fujishima, “Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films” J. Phys. Chem. A 1997(101) 8057-8062. [33] M. Sadeghi, W. Liu, T-G. Zhang, P. Stavropoulos, and B. Levy, “Role of Photoinduced Charge Carrier Separation Distance in Heterogeneous Photocatalysis:Oxidative Degradation of CH3OH Vapor in Contact with Pt/TiO2 and Cofumed TiO2/Fe2O3” J. Phys. Chem. 1996(100) 19466 –19474. [34] A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis” J. of Photochemistry and Photobiology C:Photochemistry Rev. 2000(1) 1-21. [35] A. Giraudeau﹔F. –R. F. Fan﹔A. J. Bard﹐J. Am. Chem. Soc.1980﹐16﹐102. [36] I. Bedjat﹔P. V. Kamat ﹐J. Phys. Chem. 1995﹐99﹐9182–9188. [37] R. W. Fessenden﹔P. V. Kamat﹐J. Phys. Chem. 1995﹐99﹐12902-12906. [38] P. D. Cozzoli﹔R. Comparelli﹔E. Fanizza﹔M. L. Curri﹔A.Agostiano﹔D. Laub﹐J. Am. Chem. Soc. 2004﹐126﹐3868–3879. [39] 沈偉韌,趙文寬,賀飛,方佑齡, “TiO2光催化反應及其在廢水處理中的應用” 化學進展 1998(4). [40] C. Anderson and A. J. Bard, “An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis” J. Phys. Chem. 1995(99) 9882-9885. [41] Alex H.C. Chan, Chak K. Chan, John P. Barford, John F. Porter, “Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater” Water Research 2003(37) 1125-1135. [42] Min Cho, Hyenmi Chung, Wonyong Choi, Jeyong Yoon, “Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection” Water Research 2004(38) 1069-1077. [43] S. Horikoshi, H. Hidaka, N. Serpone, “Environmental Remediation by an Integrated Microwave/UV-Illumination Method.1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO2 Dispersions” Environ. Sci. Technol. 2002(36) 1357-1366. [44] S. Horikoshi, H. Hidaka, N. Serpone, “Environmental Remediation by an Integrated Microwave/UV-Illumination Method.3.A Microwave-Powered Plasma Light Source and Photoreactor To Degrade Pollutants in Aqueous Dispersions of TiO2 Illuminated by the Emitted UV/Visible Radiation” Environ. Sci. Technol. 2002(36) 5229-5237. [45] S. Horikoshi, A. Saitou, H. Hidaka, N. Serpone, “Environmental Remediation by an Integrated Microwave/UV-Illumination Method. V.Thermal and Nonthermal Effects of Microwave Radiation on the Photocatalyst and on the Photodegradation of Rhodamine-B under UV/Vis Radiation” Environ. Sci. Technol. 2003(37) 5813-5822. [46] S. Horikoshi, F. Hojo, H. Hidaka, N. Serpone, “Environmental Remediation by an Integrated Microwave/UV-Illumination Method. 8. Fate of Carboxylic Acids, Aldehydes, Alkoxycarbonyl and Phenolic Substrates in a Microwave Radiation Field in the Presence of TiO2 Particles under UV Irradiation” Environ. Sci. Technol. 2004(38) 2198-2208. [47] 劉茂煌﹐奈米光電池﹐工業材料雜誌 2003﹐203 期﹐93. [48] Md.K.Nazeeruddin﹔S.M.Zakeeruddin﹔R.Humphry- Baker﹔M.Jirousek﹔P.Liska﹔N.Vlachopoulos﹔ V.Shklover﹔Christian-H.Fischer﹔M.Gratzel﹐Inog. Chem. 1999﹐38﹐6298– 6305. [49] Kim. S. Finnie﹔John R. Bartlett and James L. Woolfrey﹐Langmuir 1998﹐14﹐2744–2749. [50] C. Bauer﹔G. Boschloo﹔E. Mukhtar﹔A. Hagfeldt﹐J. Phys.Chem. B2002﹐106﹐12693-12704. [51] Argazzi R. et al.﹐Inorg. Chem.1994﹐33﹐5741–5749. [52] Finnie K.﹔Bartlett J.﹔Woolfrey J.﹐Langmuir 1998﹐14﹐2744–2749 . [53] Nazeeruddin Md. et al.﹐Langmuir 2000﹐16﹐8525–8528. [54] Murakoshi K et al.﹐J.Electroanal. Chem. 1995﹐396﹐27–34. [55] Sayama K.﹔Sugihara H.﹔Arakawa H.﹐Chem. Mater. 1998﹐10﹐3825–3832. [56] A. Hagfeldt, M. Grätzel, “Molecular Photovoltaics”, Acc. Chem. Res., 33, 269,(2000). [57] C. Klein﹔Md. K. Nazeeruddin﹔D. Di Censo﹔P. Liska and M.Grätzel﹐Inorg. Chem. 2004﹐43﹐4216–4226. [58] L.Brus,“Model for carrier dynamics and photoluminescence quenching in wet and dry porous silicon thin films”, Phys. Rev. B 53 (1996) 4649-4656. [59] Hiroki Usui﹔Hiroshi Matsui﹔Nobuo Tanabe﹔Shozo Yanagida﹐J. Photochem. Photobio.A: Chem. 2004﹐164﹐97-101. [60] Dong-Won Kima﹔Yeon-Bok Jeong﹔Sang-Hern Kima Dong-Yoon Lee and Jae-Sung Song﹐Chem. Commun. 2002 2972. [61] Ryoichi Komiya﹔Liyuan Han﹔Ryohsuke Yamanaka﹔Ashraful Islam and Takehito Mitate﹐J. Photochem. Photobio.A: Chem. 2004﹐164﹐123-127. [62] Liu Y.;Hagfeldt A.;Xiao X.;Lindquist S.﹐Sol. Energy Mater.Sol. Cells 1998﹐55﹐267–281. [63] Hara K. et al.﹐Sol. Energy Mater. Sol. Cells 2001﹐70﹐151–161 . [64] U. Bach, D. Lupo, M Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature 395 (1998) 583. [65] N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst For Aqueous and Organic Media”, J. Electrochem. Soc., 144, 876, (1997). [66] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc, 1997, 80, 3157-3171. [67] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14, 3160, (1998). [68] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 11, 1307, (1999). [69] 汪建民, 材料分析, [中國材料科學學會(1998)]. [70] C. Karr, “Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals’’ (1975) . [71] N. G. Park, J. vandeLagemaat, A. J. Frank, J. Phys. Chem. B, (2000), 104, 8989-8994. [72] C.A.Melendres,A.Narayanasamy,V.A.Maroni,R.W.Seigel, “Raman spectroscopy of nanophase TiO2” . J. Mater.Res. 4, 1246-1250,(1989). [73] J.C.Parker,R.W.Seigel, “Raman microprobe study of nanophase titania and oxidation-induced spectral changes” ,J. Mater.Res. 5, 1246-1252,(1990). [74] C.J.Barbe.F.Arendse,P.Comte,M.Jirousek,F.Lenzmann,V.Shklover,M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”J.Am.Ceram. Soc., 80.3157-3171,(1997).
本研究利用典型的溶膠凝膠法與水熱法製備奈米結晶顆粒的二氧化鈦塗料,並使用刮刀法(Doctor blade method)製備TiO2薄膜電極並浸泡染料後,與白金對應電極,形成三明治夾層再注入電解液而成染料敏化太陽能電池光伏元件。為了找出最佳製作太陽能電池之條件,吾人使用統計實驗法,改變不同條件下所組裝的染料敏化太陽能電池元件並測其效率。由實驗結果,可歸納出在本實驗中最佳化的條件如下: 使用D-149染料時,低電阻 FTO(10Ω)導電玻璃;由水熱法製成的二氧化鈦paste中;6μm厚的二氧化鈦薄膜; 3-methoxypropionitrile(MPN)電解液;使用氯鉑酸( H2PtCl6‧6H2O)旋轉塗佈製作的白金對應電極。其最佳條件中所得到的效率約為8.9%。另外,利用混合實驗設計法,將D-131染料、D-149染料和N3染料三種indoline系染料以一定組成混合並浸入TiO2薄膜電極和組裝元件,並找出最佳染料組成,其最佳混合比例為D-131與D-149莫耳比約為1/3為最佳,效率可達約11. 74%。

In this study, the nanocrystalline TiO2 particles were synthesized by using the sol-gel process and hydrothermal process, and then TiO2 thin films were coated on fluorine-doped tin oxide (FTO) glass by Doctor blade method. The D-149 dye was soaked onto the prepared TiO2 thin film electrode, and the platinum counter-electrode were prepared using the spin-coated method or sputtered method, forming a sandwich structure to pour into the electrolyte for the dye sensitized solar cells. The optimal conditions were systematically studied by using the statistical experimental strategy. The optimal conditions in the D-149 dye system as follows: FTO(10Ω) substrate, hydrothermal process, 6μm TiO2 film thickness, MPN as solvent for electrolyte, and the use of hexachloroplatinic acid ( H2PtCl6‧6H2O) spin-coated method to make Pt counter-electrode. The highest efficiency about 8.9% was obtained in the system using D-149 dye in the optimal conditions. On the other hand, a systematic analysis for pure organic dye system of D-131, D-149 and N3ternary components. The optimal conditions were systematically studied by using the experimental design of mixture design. The optimal composition of dyes was obtained at the D-13/ D-149 mole ratio of 1/3. The highest efficiency about 11.74% was obtained in the optimal conditions.
其他識別: U0005-1502200811362800
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.