Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36858
標題: 台灣細本葡萄(Vitis thunbergii Sieb. & Zucc.)收集系有效成分變異性之研究
Studies on the variation of active compositions in Vitis thunbergii Sieb. & Zucc. collected from Taiwan
作者: 顏裕齊
Yen, Yu-chi
關鍵字: Vitis thunbergii Sieb. & Zucc.;白藜蘆醇;resveratrol;kaempferol;flavonoid glycosides;山柰酚;類黃酮醣苷
出版社: 農藝學系所
引用: 甘偉松。1980。台灣藥用植物誌(3)。國立中國醫藥研究所。 pp.497。台北。 向陽、張彤、張煊、馬龍。2003。高效液相色譜法測定葡萄皮和葡萄 籽中白藜蘆醇的含量。衛生研究32(5):490-492。 冷平生、王天華、蘇淑釵、蔣湘宁、王沙生。2001。銀杏黃酮苷和萜 類內酯含量的季節變化。植物資源與環境學報 10(3):15-18。 汪海峰、鞠興榮、何廣斌、靳曉秋、陳劍。2002。不同海拔高度和生 長季節對銀杏葉中黃酮苷含量的影響。林產化學與工業 22(4): 47-50。 邱年永、張光雄。1995。原色台灣藥用植物圖鑑(4)。南天書局。 pp.147-148。台北。 林俊良、梁文俐、楊玲玲、顏焜熒。1993。山葡萄之成分研究(1) 大本山葡萄。鄭氏藥學基金會研究彙刊 1:47-51。 苑可武、孟憲惠、徐文豪。1997。銀杏葉中黃酮含量的季節性變化。 中草藥 28(4):211-212。 高年法、姜麗、張健、張軍。2005。HPLC法測定葡萄酒中白藜蘆醇的 基礎性研究。釀酒 32(1):75-77。 夏開元、戎衛華。2002。葡萄中的功效成分-白藜蘆醇、白藜蘆醇苷 和原花青素。食品科學 23(8):356-359。 俸靈林、鄭昕、包文芳、廖矛川。2004。RP-HPLC法同時測定虎杖中 白藜蘆醇和白藜蘆醇苷的含量。天然產物研究與開發 16(6): 534-538。 許再文。1999。台灣產葡萄科植物的分類研究。國立成功大學生物學 研究所碩士論文。台南。 陳迪偉、余建美、胡惠瑜、陳文彥。2001。蛇葡萄之研究及應用。台 灣省菸酒公賣局煙類試驗所研究工作年報 pp.25-30。 陳韋睿。2007。台灣細本葡萄(Vitis thunbergii Sieb. et Zucc.)莖葉組織解剖特徵之種內變異性。國立中興大學農藝學系 碩士論文。台中。 郭景南、劉崇懷、潘興、王季拴。2002。葡萄屬植物白藜蘆醇研究進 展。果樹學報 19(3):199-204。 曹庸、于華忠、李國章、張敏、廖書橋、蕭浪濤。2004。虎杖不同季 節、不同組織部位白藜蘆醇含量動態變化研究。中國藥學雜誌 39 (5):337-338。 管玉民、王健、尤慧蓮、林曉。2000。氣候、季節、樹齡對銀杏葉總 黃酮含量的影響。中成藥 22(5):368-370。 張立平、林伯年、沈德緒、董繼新。1997。葡萄屬植物核醣體基因的 RFLP分析。園藝學報 24(4):385-387。 劉三軍、孔慶山。1995。我國野生葡萄分類研究。果樹科學 12 (4):224-227。 蔡佳宏、王子慶、吳明昌。2001。細葉山葡萄及香菇草抗致突變性之 研究。科學農業 49(7,8):186-191. 蔡國良。2004。台灣細本山葡萄(Vitis thunbergii Sieb. et Zucc.)之遺傳多樣性。國立中興大學農藝學系碩士論文。台中。 錢大瑋、鞠建明、朱玲英、段金廒、王宇環、張紹君、郭巧生。 2002。不同樹齡銀杏葉在不同季節中總黃酮和總內酯的含量變化。 中草藥 33(11):1025-1027。 謝文聰、譚思濰、陳介甫、蔡輝彥。1998。山葡萄粗抽取物及其活性 成分之鎮痛抗炎作用研究。中國醫藥學院雜誌 7(3):81-87。 應紹舜。1995。台灣高等植物彩色圖誌。第五卷。pp. 571。台北。 蕭振杰。2005。台灣魚腥草(Houttuynia cordata Thunb.)收集系 產量、類黃酮苷及總多醣變異性之研究。國立中興大學農藝學系碩 士論文。台中。 蕭書佩。2005。細本葡萄(Vitis thunbergii Sieb. et Zucc.)雌 蕊的發育及cytokinins對雄花性別轉換效果之研究。國立中興大學 農藝學系碩士論文。台中。 Anttonen, M. J. and R. O. Karjalainen. 2005. Environmental and genetic variation of phenolic compounds in red raspberry. J. Food Compos. Anal. 18:759-769. Assinewe, V. A., B. R. Baum, D. Gagnon, and J. T. Arnason. 2003. Phytochemistry of wild populations of Panax quinquefolius L. (north Americaqn ginseng). J. Agric. Food Chem. 51:4549-4553. Aviram, M. and B. Fuhrman. 2002. Wine flavonoids protect against LDL oxidation and atherosclerosis. Ann. N. Y. Acad. Sci. 957:146-161. Baderschneider, B. and P. Winterhalter. 2001. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J. Agric. Food Chem. 49:2788- 2798. Bagchi, D., M. Bagchi, S. J. Stohs, D. K. Das, S. D. Ray, C. A. Kuszynski, S. S. Joshi, and H. G. Pruess. 2000. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 148:187-197. Baptista, J. A. B., J. F. P. Tavares, and R. C. B. Carvalho. 2001. Comparison of polyphenols and aroma in red wines from Portuguese mainland versus Azores islands. Food Res. Int. 34:345-355. Belguendouz, L., L. Fremont, and A. Linard. 1997. Resveratrol inhibits metal ion-dependent and independent peroxidation of porcine low-density lipoproteins. Biochem. Pharmacol. 53:1347-1355. Bertelli, A. A. E., L. Giovannini, D. Giannessi, M. Migliori, W. Bernini. M. Fregoni, and A. Bertelli. 1995. Antiplatelet activity of synthetic and natural resveratrol in red wine. Int. J. Tiss. Reac. 17(1):1-3. Brown, M. V., J. N. Moore, P. Fenn, and W. McNew. 1999. Evalution of grape gerplasm for downy mildew resistance. Fruit Var. J. 53(1):22-29. Burda, S. and W. Oleszek. 2001. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 49:2774- 2779. Burns, J., T. Yokota, H. Ashihara, M. E. J. Lean, and A. Crozier. 2002. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 50:3337-3340. Castillo, J., O. Benavente-Garcia, J. Lorente, M. Alcaraz, A. Redondo, A. Ortuno, and J. A. Del Rio. 2000. Antioxidant activity and radioprotective effects against chromosomal damage induced in Vivo by X-rays of flavan -3- ols (procyanidins) from grape seeds (Vitis vinifera): comparative study versus other phenolic and organic compounds. J. Agric. Food Chem. 48:1738-1745. Chen, R. S., P. L. Wu, and R. Y. Y. Chiou. 2002. Peanut roots as a source of resveratrol. J. Agric. Food Chem. 50:1665-1667. Chung, I. M., M. R. Park, J. C. Chun, and S. J. Yun. 2003. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci. 164:103-109. Counet, C., D. Callemien, and S. Collin. 2006. Chocolate and cocoa: new sources of trans-resveratrol and trans-piceid. Food Chem. 98:649-657. Court, W. A., L. B. Reynolds, and J. G. Hendel. 1996. Influence of root age on the concentration of ginsenosides of American ginseng (Panax quinquefolium). Can. J. Plant Sci. 76:853-855. Deschner, E. E., J. Ruperto, G. Wong, and H. L. Newmark. 1991. Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis 12(7):1193-1196. Ding, C., E. Chen, and R. C. Lindsay. 2007. Natural accumulation of terpene trilactones in Ginkgo biloba leaves: variations by gender, age and season. Eur. Food Res. Technol. 224:615-621. Dubber, M. J. and I. Kanfer. 2004. High-performance liquid chromatographic determination of selected flavonols in Ginkgo biloba solid oral dosage forms. J. Pharm. Pharmaceut. Sci. 7(3):303-309. Forkmann, G. 1991. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed. 106:1-26. Frankel, E., A. Waterhouse, and J. Kinsella. 1993. Inhibition of human LDL oxidation by resveratrol. Lancet 341:1103-1104. Frankel, E. N., A. L. Waterhouse, and P. L. Teissedre. 1995. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 43:890-894. Frankel, E. N., C. A. Bosanek, A. S. Meyer, K. Silliman, and L. L. Kirk. 1998. Commercial grape juices inhibit the in Vitro oxidation of human low-density lipoproteins. J. Agric. Food Chem. 46:834-838. Gabetta, B., N. Fuzzati, A. Griffini, E. Lolla, R. Pace, T. Ruffilli, and F. Peterlongo. 2000. Characterization of proanthocyanidins from grape seeds. Fitoterapia 71:162-175. Gambuti, A., D. Strollo, M. Ugliano, L. Lecce, and L. Moio. 2004. Trans-resveratrol, quercetin, (+)-catechin, and (+)-epicatechin content in South Italian monovarietal wines: relationship with maceration time and marc pressing during winemaking. J. Agric. Food Chem. 52:5747-5751. Gaulejac, N. S. C., Y. Glories, and N. Vivas. 1999. Free radical scavenging effect of anthocyanins in red wines. Food Res. Int. 32:327-333. Gehm, B. D., J. M. McAndrews, P. Y. Chien, and J. L. Jameson. 1997. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc. Natl. Acad. Sci. 94:14138-14143. Ghiselli, A., M. Nardini, A. Baldi, and C. Scaccini. 1998. Antioxidant activity of different phenolic fractions separated from an Italian red wine. J. Agric. Food Chem. 46(2):361-367. Goffman, F. D. and H. C. Becker. 2002. Genetic variation of tocopherol content in a germplasm collection of Brassica napus L. Euphytica 125:189-196. Goto-Yamamoto, N., R. Mochioka, L. Bonian, K. Hashizume, N. Umeda, and S. Horiuchi. 1998. RFLP and RAPD analysis of wild and cultivated grapes (Vitis spp.). J. Japan. Soc. Hort. Sci. 67(4):483-490. Goto-Yamamoto, N. 2000. Phenetic clustering of grapes (Vitis spp.) by AFLP analysis. Breed. Sci. 50:53-57. Hertog, M. G. L., E. J. M. Feskens, P. C. H. Hollman, M. B. Katan, and D. Kromhout. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen elderly study. Lancet 342:1007-1011. Hollman, P. C. H., J. H. M. Vries, S. D. van Leeuwen, M. J. B. Mengelers, and M. B. Katan. 1995. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 62:1276-1282. Hollman, P. C. H. and M. B. Katan. 1999. Dietary flavonoids: intake, health effects and bioavailability. Food Chem. Toxicol. 37:937-942. Hsieh, C. F., T. C. Huang, Z. Y. Li, H. C. Lo, H. Ohashi, C. F. Shen, J. C. Wang, K. C. Yang, C. M. Hu, and H. Y. Yang. 1993. Flora of Taiwan volume three, second edition. pp.709-710. Taipei. Huang, Y. L., W. J. Tsai, C. C. Shen, and C. C. Chen. 2005. Resveratrol derivatives from the roots of Vitis thunbergii. J. Nat. Prod. 68:217-220. Jang, M., L. Cai, G. O. Udean, K. V. Slowing, C. F. Thomas, C. W. W. Beecher, H. H. S. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon and J. M. Pezzuto. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218-220. Jang, M. and J. M. Pezzuto. 1999. Cancer chemopreventive activity of resveratrol. Drugs Exptl. Clin. Res. 25(2,3):65-77. Jenkins, K. J., M. Hidiroglou, and F. W. Collins. 1993. Influence of various flavonoids and simple phenolics on development of exudative diathesis in the chick. J. Agric. Food Chem. 41:441-445. Katalinic, V., M. Milos, D. Modun, I. Music, and M. Boban. 2004. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem. 86:539-600. Kitabayashi, H., A. Ujihara, T. Hirose, and M. Minami. 1995a. Varietal differences and heritability for rutin content in common buckwheat, Fagopyrum esculentum Moench. Breed. Sci. 45:75-79. Kitabayashi, H., A. Ujihara, T. Hirose, and M. Minami. 1995b. On the genotypic differences for rutin content in tartary buckwheat, Fagopyrum tataricum Gaertn. Breed. Sci. 45:189-194. Knekt, P., J. Kumpulainen, R. Jarvinen, H. Rissanen, M. Heliovaara, A. Reunnanen, and T. Hakulinen. 2002. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 76:560-568. Koga, T., K. Moro, K. Nakamori, J. Yamakoshi, H. Hosoyama, S. Kataoka, and T. Ariga. 1999. Increase of antioxidative potential of rat plasma by oral administration of proanthocyanidin-rich extract from grape seeds. J. Agric. Food Chem. 47:1892-1897. Lee, J. J., K. M. Crosby, L. M. Pike, K. S. Yoo, and D. I. Leskovar. 2005. Impact of genetic and environmental variation on development of flavonoids and carotenoids in pepper (Capsicum spp.). Sci. Hortic. 106:341-352. Li, T. S. C. and D. Wardle. 2002. Seasonal fluctuations of leaf and root weight and cinsenoside contents of 2-, 3-, and 4-year-old American ginseng plants. HortTechnology 12(2):229-232. Li, T. S. C., G. Mazza, A. C. Cottrell, and L. Gao. 1996. Ginsenosides in roots and leaves of American ginseng. J. Agric. Food Chem. 44:717-720. Lin, J. K. and S. H. Tsai. 1999. Chemoprevention of cancer and cardiovascular disease by resveratrol. Proc. Natl. Sci. Conc. 23:99-106. Liu, L. and A. Castonguay. 1991. Inhibition of the metabolism and genotoxicity of 4- (methylnitrosamino)-1- (3-pyridyl)-1-butanone (NNK) in rat hepatocytes by (+)-catechin. Carcinogenesis 12(7):1203-1208. Lobstein, A., L. Rietsch-Jako, M. Haag-Berrurier, and R. Anton. 1991. Seasonal variation of the flavonoid content from Ginkgo biloba leaves. Planta Med. 57:430-433. Lu, Y. and L. Y. Foo. 1999. The polyphenol constituents of grape pomace. Food Chem. 65:1-8. Luo, S. L., P. C. He, X. Q. Zheng, and P. Zhou. 2001. Genetic diversity in wild grapes native to China based on randomly amplified polymorphic DNA (RAPD) analysis. Acta Botanica Sinica 43(2):158-163. Merillon, J. M., B. Fauconneau, P. W. Teguo, L. Barrier, J. Vercauteren, and F. Huguet. 1997. Antioxidant activity of the stilbene astringin, newly extracted from Vitis vinifera cell cultures. Clin. Chem. 43(6):1092-1093. Middleton, E. J. R., C. Kandasqami, and T. C. Theoharides. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52:673-751. Monagas, M., B. Bartolome, and C. Gomez-Cordoves. 2005. Updated knowledge about the presence of phenolic compounds in wine. Crit. Rev. Food Sci. Nutr. 45:85-118. Moreno-Labanda, J. F., R. Mallavia, L. Perez-Fons, V. Lizama, D. Saura, and V. Micol. 2004. Determination of piceid and resveratrol in Spanish wines deriving from Monastrell (Vitis vinifera L.) grape variety. J. Agric. Food Chem. 52:5396-5403. Morishita, T., H. Yamaguchi, and K. Degi. 2007. The contribution of polyphenols to antioxidative activity in common buckwheat and tartary buckwheat grain. Plant Prod. Sci. 10(1):99-104. Nakagawa, S., S. Horiuchi, H. Matsui, E. Yuda, S. Yamada, Y. Murai, and H. Komatsu. 1991. Distribution and leaf morphology of wild grapes native to Japan. J. Japan. Soc. Hort. Sci. 60(1):31-39. Nikfardjam, M. S. P., G. Laszlo, and H. Dietrich. 2006. Resveratrol-derivatives and antioxidative capacity in wines made from botrytized grapes. Food Chem. 96:74-79. Ohsawa, R. and T. Tsutsumi. 1995. Inter-varietal variations of rutin content in common buckwheat flour (Fagopyrum esculentum Moench). Euphytica 86:183-189. Oomah, B. D. and G. Mazza. 1996. Flavonoids and antioxidative activities in buckwheat. J. Agric. Food Chem. 44:1746-1750. Orsini, F., F. Pelizzoni, L. Verotta, and T. Aburjai. 1997. Isolation, synthesis, and antiplatelet aggregation activity of resveratrol 3-O-β-D- glucopyranoside and related compounds. J. Nat. Prod. 60:1082-1087. Pedrielli, P., G. F. Pedulli, and L. H. Skibsted. 2001. Antioxidant mechanism of flavonoids solvent effect on rate constant for chain-breaking reaction of quercetin and epicatechin in antioxidation of methyl linoleate. J. Agric. Food Chem. 49:3034-3040. Pekkarinen, S. S., I. M. Heinonen, and A. I. Hopia. 1999. Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidant in methyl linoleate. J. Sci. Food Agric. 79:499-506. Pietta, P. G. 2000. Flavonoids as antioxidants. J. Nat. Prod. 63:1035-1042. Renaud, S. and M. Lorgeril. 1992. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523-1526. Rice-Evans, C. A., N. J. Miller, and G. Paganga. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acid. Free Radic. Biol. Med. 20(7):933-956. Sanders, T. H., R. W. McMichael, and K. W. Hendrix. 2000. Occurrence of resveratrol in edible peanuts. J. Agric. Food Chem. 48:1243-1246. Santos-Buelga, C. and A. Scalbert. 2000. Proanthocyanidins and tannin-like compounds ature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 80:1094-1117. Schlag, E. M. and M. S. McIntosh. 2006. Gensenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 67:1510-1519. Shyur, L. F., J. H. Tsung, J. H. Chen, C. Y. Chiu, and C. P. Lo. 2005. Antioxidant properties of extracts from medicinal plants popularly used in Taiwan. Int. J. Appl. Sci. Eng. 3(3):195-202. Soleas, G. J., L. Grass, P. D. Josephy, D. M. Goldberg, and E. P. Diamandis. 2006. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin. Biochem. 39:492-497. Sun, B., A. M. Ribes, M. C. Leandro, A. P. Belchior and M. I. Spranger. 2006. Stilbenes: quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Anal. Chim. Acta 563:382-390. van Beek, T. A. and G. P. Lelyveld. 1992. Concentration of ginkgolides and bilobalide in Ginkgo biloba leaves in relation to the time of year. Planta Med. 58:413-416. Verma, A. K., J. A. Johnson, M. N. Gould, and M. A. Tanner. 1988. Inhibition of 7, 12- dimethylbenzanthracene- and N- nitrosomethylurea - induced rat mammary cancer by dietary flavonol quercetin. Cancer Res. 48:5754-5758. Wang, H., G. Gao, and R. L. Prior. 1997. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45:304-309. Wang, K. H., Y. H. Lai, J. C. Chang, T. F. Ko, S. L. Shyu, and R. Y. Y. Chiou. 2005. Germination of peanut kernels to enchance resveratrol biosynthesis and prepare sprouts as a functional vegetable. J. Agric. Food Chem. 53:242-246. Wang, Z., Y. Huang, J. Zou, K. Cao, Y. Xu, and J. M. Wu. 2002. Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Int. J. Mol. Med. 9:77-79. Weber, G., F. Shen, N. Prajda, H. Yang, W. Li, A. Yen, B. Csokay, E. Olah, and K. Y. Look. 1997. Regulation of the signal transduction program by drugs. Adv. Enzyme Regul. 37:35-55. Weyant, M. J., A. M. Carothers, A. J. Dannenberg, and M. M. Bertagnolli. 2001. (+)-catechin inhibits intestinal tumor formation and suppresses focal adhesion kinase activation in the min/ + mouse. Cancer Res. 61:118-125. Yamakoshi, J., S. Kataoka, T. Koga, and T. Ariga. 1999. Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol - fed rabbits. Atherosclerosis 142:139-149. Yao, L., N. Caffin, B. D’arcy, Y. Jiang, J. Shi, R. Singanusong, X. Liu, N. Datta, Y. Kakuio, and Y. Xu. 2005. Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis). J. Agric. Food Chem. 53:6477-6483. Yilmaz, Y. and R. T. Toledo. 2004. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 52:255-260.
摘要: 
本試驗以53個細本葡萄收集系為材料,探討細本葡萄根、莖、葉及幼莖等不同植株部位白藜蘆醇、白藜蘆醇苷、山柰酚以及類黃酮醣苷等有效成分含量之周年變化,以及不同收集系間及株齡間有效成分含量之變異,作為栽培利用和育種選拔之參考。
由有效成分周年變化之結果得知,白藜蘆醇、山柰酚及類黃酮醣苷含量於植株進入休眠時期為最高,即12月至2月為有效成分含量的高峰期。綜合變方分析結果顯示,不同植株部位各有效成分含量在不同收穫月份、收集系及植株部位間均呈極顯著差異,且月份、收集系及植株部位彼此間之交感作用亦呈極顯著。收集系不同植株部位有效成分含量皆呈3月高於8月,白藜蘆醇和白藜蘆醇苷以根部和莖部含量最高;山柰酚和類黃酮醣苷含量則以葉部最高,幼莖次之。在不同株齡有效成分含量變異方面,各有效成分含量於不同株齡、植株部位以及株齡與部位間之交感作用皆呈極顯著差異,白藜蘆醇和白藜蘆醇苷含量以三年生植株最高;山柰酚和類黃酮醣苷含量則以一年生植株最高。
分析各有效成分在不同植株部位間之相關關係顯示,白藜蘆醇在莖部之含量與根部和幼莖之含量呈顯著正相關;白藜蘆醇苷和類黃酮成分在葉部之含量與幼莖之含量呈顯著正相關。從各個部位之有效成分間相關關係來看,根部、莖部及葉部之白藜蘆醇與白藜蘆醇苷呈顯著正相關;莖部金絲桃苷與異槲皮苷和槲皮苷也呈顯著正相關;葉部之異槲皮苷分別與芸香苷和槲皮苷呈顯著正相關和負相關,金絲桃苷與槲皮苷則呈顯著正相關。試驗結果顯示選拔莖部白藜蘆醇和葉部類黃酮成分含量高之收集系,可同時選獲根部白藜蘆醇和幼莖類黃酮成分高含量之收集系。

Resveratrol, piceid, kaempferol, and four flavonoid glycosides are active compositions present in Vitis thunbergii Sieb. & Zucc. In this study, 53 collections collected from Taiwan were used as materials to investigate the variations of active compositions among collections, seasons, and plant parts, the correlation among active compositions of various plant parts were analyzed. The results are summarized as follows:
During the cultivation period of V. thunbergii, resveratrol, kaempferol, and four flavonoid glycosides accumulate at the highest levels from December to February during the growth period. Significant differences are found in resveratrol, piceid, kaempferol, and flavonoid glycosides contents of harvest months, collections, plant parts, and the interactions among them by combined ANOVA analysis. Means of the active compositions contents in all plant parts were higher in March than in August. Resveratrol and piceid contents show the highest levels in root and stem. Kaempferol and four flavonoid glycosides are found to be the highest levels in leaf following with young stem. Few flavonoids can be detected in root and stem.
Significant differences are found in plant ages, plant parts, and the interaction of plant ages and plant parts of V. thunbergii for resveratrol, piceid, kaempferol, and flavonoid glycosides contents. The 3-year-old V. thunbergii has the highest levels of resveratrol and piceid and the 1-year-old plants show the highest levels of kaempferol and flavonoid glycosides contents, respectively. Significant positive correlations of resveratrol among the root, stem, and young stem are found by correlation analyses. Piceid, kaempferol, and four flavonoid glycosides show significant correlation between leaf and young stem. Resveratrol content of root, stem, and leaf are positively correlated with piceid. Hyperin content of stem shows positive correlation with isoquercitrin and quercitrin, and hyperin content of leaf also shows positive correlation with quercitrin. In leaf, isoquercitrin is positive correlated with rutin but negative correlated with quercitrin. According to this study, high contents of resveratrol in stem and root, and flavonoids in leaf and young stem can be improved by selection.
URI: http://hdl.handle.net/11455/36858
其他識別: U0005-2601200817373500
Appears in Collections:農藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.