Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/36918
DC Field | Value | Language |
---|---|---|
dc.contributor | 陳良築 | zh_TW |
dc.contributor | 鍾美珠 | zh_TW |
dc.contributor.advisor | 王強生 | zh_TW |
dc.contributor.author | 黃巧宜 | zh_TW |
dc.contributor.author | Huang, Chiao-Yi | en_US |
dc.contributor.other | 中興大學 | zh_TW |
dc.date | 2009 | zh_TW |
dc.date.accessioned | 2014-06-06T07:58:13Z | - |
dc.date.available | 2014-06-06T07:58:13Z | - |
dc.identifier | U0005-2508200816170900 | zh_TW |
dc.identifier.citation | 程台生、連大進、陳麗珠。1997。大豆基因轉殖。科學農業。45(5): 186- 193。 行政院衛生署。2006。九十五年台灣地區主要死亡原因統計。 邱輝龍、范明仁。1998。花青素與花色之表現。中國園藝 44(2):102-115。 郭昭麟、羅淑芳、李鎮宇、蔡新聲。2004。植物組織培養再生技術與基因轉殖。p. 25-46。植物基因轉殖之原理與應用。葉錫東、陳良築、楊長賢、曾志正、詹富智主編。植物生物技術教學資源中心教育部顧問室出版。台中。 詹明才。2004。農桿菌轉殖技術。p.59-72。植物基因轉殖之原理與應用。葉錫東、陳良築、楊長賢、曾志正、詹富智主編。植物生物技術教學資源中心教育部顧問室出版。台中。p.308。 鄭麗珠。2007。利用轉基因植物生產活性胜肽及醫藥工業用酵素之研究。國立中興大學分子生物學研究所碩士論文。 Beckman, J.A., M.A. Creager, and P. Libby. 2002. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287:2570-81. Beilinson, V., Z. Chen, R.C. Shoemaker, R.L. Fischer, R.B. Goldberg, and N.C. Nielsen. 2002. Genomic organization of glycinin genes in soybean. Theor. Appl. Genet. 104:1132-1140. Brenada, W.S. 2002. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5:218-223. Cheng, T.Y., H. Saka, and T.H. Voqui-Dinh. 1980. Plant regeneration from soybean cotyledonary node segments in culture. Plant Science Letters 19:91-99. Christianson, M.L., D.A. Warnick, and P.S. Carlson. 1983. A Morphogenetically Competent Soybean Suspension Culture. Science 222:632-634. Cregan, P.B., K.P. Kollipara, S.J. Xu, R.J. Singh, S.E. Fogarty, and T. Hymowitz. 2001. Primary trisomics and SSR markers as tools to associate chromosomes with linkage groups in soybean. Crop Sci. 41: 1262-1267. Diers, B.W., V. Belnson, N.C. Nielsen, and R.C. Shoemaker. 1993. Genetic mapping of the Gy4 and Gy5 glycinin genes in soybean and analysis of a variant of Gy4. Theor. Appl. Genet 89:297-304. Donaldson, P.A., and D.H. Simmonds. 2000. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep 19:478-484. Droste, A., G. Pasquali, and M.H.B. Zanettini. 2000. Integrated bombardment and agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol. Biol. Rep. 18:51-59. Finer, J.J. 1988. Apical proliferation of embryogenic tissue of soybean [Glycine max (L.) Merrill]. Plant Cell Reports 7:238-241. Finer, J.J., and A. Nagasawa. 1988. Development of an embryogenic suspension culture of soybean (Glycine max Merrill.). Plant Cell. Tissue and Organ Culture 15:125-136. Fischer, R.L., and R.B. Goldberg. 1982. Structure and flanking regions of soybean seed protein genes. Cell 29:651-660. Forkmann, G. 1991. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breeding 106:1-26. Fraias, P.C.M., and A.L.S. Chaves. 2008. Advances in agrobacterium- mediated plant transformation with enphasys on soybean. Sci. Agric. (Piracicaba, Braz.), 65:95-106. Garcia, M.C., M. Torre, M.L. Marina, and F. Laborda. 1997. Composition and characterization of soyabean and related products. Crit Rev Food Sci Nutr 37:361-91. Gardner, M.E., S.J. Xu, and G.L. Hartman. 2001. Physical map location of the Rps1-k allele in soybean. Crop Sci 42:1435-1438. Giddings, G., G. Allison, D. Brooks, and A. Carter. 2000. Transgeni plants as factories for biopharmaceuticals. Nature biotechnology 18:1151-1155. Gilbert, R.T. 2004. Management of dyslipidaemia. Heart 90:949-955. Godwin, I., G. Todd, B. F. Lloyd, and H. J. Newbury. 1991. The effects of acetosyringone and pH on agrobacterium- mediated transformation vary according to plant species. Plant cell rep. 9: 671- 675. Gordon M.Wardlaw, J.S.H., Robert A. DiSilvestro. 2004. Lipid, p. 177-222, In J. S. H. Gordon M.Wardlaw, Robert A. DiSilvestro, ed. Perspectives in Nutrition, 6e ed. McGraw-Hill, WI New York. Gritz, L., and J. Davies. 1983. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25:179-188. Hadi, M.Z., M.D. McMullen, and J.J. Finer. 1996. Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500-505. Hansen, G., and M.S. Wright. 1999. Recent advances in the transformation of plants Trends Plant Sci. 4:226-231. Hiatt, A., R. Cafferkey, and K. Bowdish. 1989. Production of antibodies in transgenic plants. Nature 342:76-78. Hinchee, M.A.W., D.V.C. Ward, C.A. Newell, R.E. McDonnell, S.J. Sato, C.S. Gasser, D.A. Fischhoff, D.B. Re, R.T. Fraley, and R.B. Horsch. 1988. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio. Tech. 6:915-922. Hiraga, S., H. Minakawa, K. Takahashi, R. Takahashi, M. Hajika, K. Harada, and N. Ohtsubo. 2007. Evalution of somatic embryogenesis from immature cotyledons of japanese soybean cultivars. Plant Biotechnology 24:435-440. Holton, T.A., and E.C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 7:1071-1083. Hong, H.P., H. Zhang, P. Olhoft, S. Hill, H. Wiley, E. Toren, H. Hillebrand, T. Jones, and M. Cheng. 2007. Organogenic callus as the target for plant regeneration and transformation via Agrobacterium in soybean [Glycine max (L.) Merr.]. In Vitro Cell Dev Biol─Plant 43:558-568. Jänne, J., J.M. Hyttinen, T. Peura, M. Tolvanen, L. Alhonen, R. Sinervirta, and M. Halmekytö. 1994. Transgenic bioreactors. Int J Biochem. 26:859-870. James, C. 2007. Global status of commercialized Biotech/GM Crops: 2007. Ithaca: ISAAA, 2007. (Briefs, 37). Kagawa, K., T. Kaneda, T. Tadokaro, and Y. Matsumura. 1991. Lipid metabolism improving agent and method of its use. EP0420979A1. Kagawa, K., H. Matsutaka, C. Fukuhama, Y. Watanabe, and H. Fujino. 1996. Globin digest, acidic protease hydrolysate, inhibits dietary hypertriglyceridemia and Val-Val-Tyr-Pro, one of its constituents, possesses most superior effect. Life Sci 58:1745-55. Kagawa, K., H. Matsutaka, C. Fukuhama, H. Fujino, and H. Okuda. 1998. Suppressive effect of globin digest on postprandial hyperlipidemia in male volunteers. J Nutr 128:56-60. Kaneda, Y., Y. Tabei, S. Nishimura, K. Harada, T. Akihama, and K. Kitamura. 1997. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans [Glycine max. (L.) Merr.]. Plant Cell Rep 17:8-12. Katsube, T., N. Kurisaka, M. Ogawa, N. Maruyama, R. Ohtsuka, S. Utsumi, and F. Takaiwa. 1999. Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol. 120:1063-74. Li, F.X., Z.P. Jin, D.X. Zhao, L.Q. Cheng, C.X. Fu, and F. Ma. 2006. Overexpression of the Saussurea medusa chalcone isomerase gnene in S. involudcrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry 67:553-560. Liu, S.J., Z.M. Wei, and J.Q. Huang. 2007. The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep on line DOI 10.1007/s00299-007-0475-8. Ma, X.H., and T.L. Wu. 2008. Rapid and efficient regeneration in soybean [Glycine max (L.) Merrill] from whole cotyledonary node explants. Acta Physiol Plant (Unpublished). Maekawa, M., T. Sato, T. Kumagai, and K. Noda. 2001. Differential responses to UV-B irradiation of three near isogenic lines carrying different purple leaf genes for anthocyanin accumulation in rice (Oryza sativa L.). Breeding Science 51:27-32. Maruta, Y., J. Ueki, H. Saito, N. Nitta, and H. Imaseki. 2001. Transgenic rice with reduced glutelin content by transformation with glutelin a antisense gene. Mol. Breed. 8:273-284. McCabe, D.E., W.F. Swain, B.J. Martinell, and P. Christou. 1988. Stable transformation of soybean (Glycine max) by particle acceleration. Bio. Tech. 6:923-926. Mejia, E.D., and B.O.D. Lumen. 2006. Soybean bioactive peptides: A new horizon in preventing chronic diseases. Sexuality, Reproduction and Menopause 4:91-95. Meurer, C.A., R.D. Dinkins, and G.B. Collins. 1998. Factors affecting soybean cotyledonary node transformation. Plant Cell Rep 18:180-186. Muir, S.R., G.J. Collins, S. Robinson, S. Hughes, A. Bovy, C.H.R.D. Vos, A.J.V. Tunen, and M.E. Verhoeyen. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature biotechnology 19:470-474. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures Physiol. Plant 15:473-497. Nielsen, N.C., C.D. Dickinson, T.J. Cho, V.H. Thanh, B.J. Scallon, R.L. Fischer, T.L. Sims, G.N. Drews, and R.B. Goldberg. 1989. Characterization of the glycinin gene family in soybean. Plant Cell 1:313-328. Nishihara, M., T. Nakatsuka, and S. Yamamura. 2005. Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS letters 579:6074-6078. Okpuzor, J., and O. Omidiji. 1998. Peroxidase- polyphenol oxidase association in Dioscorea esculenta. Z. Naturforsch. 55:957-960. Olhoft, P.M., L.E. Flagel, C.M. Donovan, and D.A. Somers. 2003. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723-735. Olhoft, P.M., K. Lin, J. Galbraith, N.C. Nielsen, and D.A. Somers. 2001. The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731-737. Paz, M., J.C. Martinez, A.B. Kalvig, T.M. Fonger, and K. Wang. 2006. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206-213. Paz, M.M., H. Shou, Z. Guo, Z. Zhang, A.K. Banerjee, and K. Wang. 2004. Assessment of conditions Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphtica 136:167-179. Philip, R., D.W. Darnowski, P.J. Maughan, and L.O. Vodkin. 2001. Processing and localization of bovine β-casein expressed in transgenic soybean seeds under control of a soybean lectin expression cassette. Plant Sci. 161:323-335. Ralston, L., S. Subramanian, M. Matsuno, and O. Yu. 2005. Partial recontruction of flavonoid and isoflavonid biosyntheis in yest using soybean type I and Type II chalcone isomeases Plant Physiol 137:1375-1388. Samoylov, V.M., D.M. Tucker, and W.A. Parrott. 1998. Soybean [Glycine max (L.) merrill] evbryogenic cultures: the role of sucrose and total nitrogen content on proliferation. In Vitro cell Dev Biol.─Plant 34:8--13. Santarem, E.R., B. Pelissier, and J.J. Finer. 1997. Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev Biol─Plant 33:13-19. Santarem, E.R., H.N. Trick, J.S. Essig, and J.J. Finer. 1998. Sonication assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752-759. Scallon, B., V.H. Thanh, L.A. Floener, and N.C. Nielsen. 1985. Identification and characterization of DNA clones encoding group-II glycinin subunits. Theor. Appl. Genet 70:510-519. Shan, Z., K. Raemakers, E.N. Tzitzikas, Z. Ma, and R.G. Visser. 2005. Development of a highly effiient, repetitive system of organogenesis in soybean [Glycine max (L.) Merr.]. Plant Cell Rep 24:507-512. Simada, N., T. Aoki, S. Sato, Y. Nakamura, S. Tabata, and S.I. Ayabe. 2003. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol 131:941-945. Stoger, E., J.K.C. Ma, R. Fischer, and P. Christou. 2005. Sowing the seeds of success: pharmaceutical proteins from plants. Curr. Opin. Biotechnol. 16:167-173. Tada, Y., S. Utsumi, and F. Takaiwa. 2003. Foreign gene products can be enhanced by introduction into low storage protein mutants. Plant Biotechnol. 1:411-422. Tian, L. and R.A. Dixon. 2006. Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224:496-507. Townsend, J.A. and L.A. Thomas. 1994. An improved method of Agrobacterium-mediated transformation of cultured soybean cells. Canada Patent WO94/02620 1994. Williams, D.C., R.M. Van Frank, W.L. Muth, and J.P. Burentt. 1982. Cytoplasmic inclusion bodies in Eshcerichia coli production biosynthetic human insulin proteins. Science 215:687-689. Wright, M.S., S.M. Koehler, M.A. Hinchee, and M.G. Carnes. 1986. Plant regeneration by organogenesis in Glycine max. Plant Cell Reports 5:150-154. Xue, R.G., H.F. Xie, and B. Zhang. 2006. A multi-needle-assisted transformation of soybean cotyledonary node cells. Biotechnol Lett 28:1551-1557. Yamada, Y., K. Nishizawa, M. Yokoo, H. Zhao, K. Onishi, M. Teraishi, S. Utsumi, M. Ishimoto, and M. Yoshikawa. 2008. Anti- hypertensive activity of genetically modified soybean seeds accumulating novokinin. Peptides 29:331-337. Yamauchi, F., T. Yamagishi, and S. Iwabuchi. 1991. Molecular understanding of heat- induced phenomena of soybean protein. Food Rev. Int. 7:283-322. Zhang, Z., A. Xing, P. Staswick, and T.E. Clemente. 1999. The use of glyfosinate as a selective agent in agrobacterium-mediated transformation of soybean. Plant Cell, Tissue and Organ Culture 56:37-46. Zupan, J.R., and P. Zambryski. 1995. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol. 107:1041-1047. | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11455/36918 | - |
dc.description.abstract | 儘管學者們對於大豆基因轉殖進行許多研究,而且抗殺草劑轉基因大豆Roundup®已經商品化大量生產,但由於品種間的遺傳變異及其對組織培養和轉殖過程的差異性反應,至今大豆基因轉殖仍然是一項挑戰。影響基因轉殖的因子相當多,包括農桿菌的品系、培植體的種類及環境等因素。本研究利用農桿菌媒介法轉殖大豆種皮CHI3基因之反義股,探討添加acetosyringone(AS)、抗生素篩選時期及傷害處理對芽體再生及轉殖效率之影響。在添加AS及抗生素篩選時期的試驗,雖然有助於芽體的再生,但對於轉殖效率並沒有顯著的影響;而傷害處理試驗,雖然芽體再生並無影響,但以電線進行傷害處理確實會提升轉殖效率,結合本研究的各種最佳處理條件,期望建立一穩定及高效率的大豆基因轉殖系統。轉殖後培植體經kanamycin抗生素篩選及PCR方法鑑定後,共獲得6株轉殖株,轉殖效率為0.7%。 利用轉基因植物生產重要代謝產物,或進行特定代謝物之改造與生產,做為抗體或疫苗,是目前生物技術中熱門且具高價值的領域,大豆含有大量的蛋白質,是作為生產重組蛋白極佳的材料。心臟血管疾病為近年來國人十大死因之一,高血脂症會增加心血管疾病發生的機率,因此血脂的控制應是預防心血管疾病首要的工作。活性胜肽Val- Val- Tyr- Pro (VVYP)具降血脂的作用,本研究運用農桿菌媒介法,以大豆子葉節為培植體,轉殖經改造後帶有活性胜肽VVYP之大豆儲藏性蛋白glycinin Gy5基因,及可抑制原有儲藏性蛋白表現的RNAi構築,期能獲得在不影響大豆種子正常發育的情況下,可提高外來基因及目標蛋白質之表現量的轉殖大豆品系,轉殖後培殖體經hygromycin抗生素篩選及PCR方法鑑定後,在Gy5-10vp基因構築部分,獲得5株轉殖株,轉殖效率為1.4 %。RNAi構築的部份, Gy1p-Gy2/3i基因構築獲得有6株轉殖株,其轉殖效率為1.7 %。 | zh_TW |
dc.description.abstract | Many researches on soybean transformation have been reported and commercialized transgenic soybean plants have been planted worldwide yet the transformation of soybean is still a challenge due to the genetic variations of cultivars in tissue culture, regeneration, and transformation. Many factors that may affect soybean genetic transformation including agrobacterium strain, type of explants, and environmental conditions, etc. In this study the effects of acetosyringone (AS), stage of antibiotic selection, and wounding treatment on shoot regeneration and transformation frequency were studied using antisense CHI3 clone through Agrobacterium-mediated transformation method. No significant effect on shoot induction and transformation frequency was observed in either the addition of AS or stage of antibiotic selection. Only wounding treatment by electric wires increased the transformation efficiency. Six putative transgenic plants with antisense CHI3 gene were confirmed by PCR resulting 0.7% transformation frequency. Soybean is a good material for the production of secondary metabolites and recombinant proteins through genetic engineering because of its seed characteristics. The bioactive peptide Val-Val-Tyr-Pro (VVYP) was found to be effective in reducing the blood cholesterol and can be applied to prevent the cardiovascular diseases. Gene constructs contain soybean storage protein glycinin gene, Gy5, carrying 10 copies of VVYP, and RNA interference construct for blocking the of endogenous storage protein expression were transferred into cotyledonary nodes of soybean CWRD variety through Agrobacterium- mediated method in attempt to establish a system using the soybean as a bioreactor to produce bioactive peptides without interfering its seed proteins production. In this study, 5 and 6 putative transgenic plants with Gy5-10vp and Gy1-Gy2/3i gene were confirmed by PCR, and showed 1.4%. and 1.7% transformation frequency, respectively. | en_US |
dc.description.tableofcontents | 中文摘要...................................................i 英文摘要..................................................ii 目錄.....................................................iii 表目次....................................................vi 圖目次...................................................vii 前言.......................................................1 前人研究...................................................3 一、大豆組織培養及基因轉殖.................................3 (一) 組織培養............................................3 (二) 大豆基因轉殖........................................4 1. 農桿菌感染機制..........................................4 2. 大豆農桿菌基因轉殖......................................5 二、生物反應器(bioreactor.................................7 (一) 大豆種子儲藏性蛋白..................................8 三、類黃酮生合成基因.......................................9 (一) 類黃酮生合成途徑(flavonoid biosynthesis pathway)..9 (二) 芳基烯丙醯芳羥異構酵素(chalcone isomerase, CHI)..11 四、適合在大豆生產之活性胜肽─Val-Val-Tyr-Pro(VVYP).....12 (一) 高血脂症(hyperlipidemia).........................12 (二) 抗高血脂胜肽─VVYP.................................12 材料與方法................................................14 一、試驗材料..............................................14 二、基因轉殖系統..........................................14 (一) 轉殖載體與農桿菌品系...............................14 (二) 培養基.............................................14 (三) 轉殖流程...........................................16 三、試驗方法..............................................18 (一) 抗生素對大豆子葉存活率之影響.......................18 (二) 感染菌液中添加AS對芽體再生及轉殖效率之影響.........18 (三) 抗生素篩選時期對芽體再生及轉殖效率之影響...........19 (四) 傷害處理對芽體再生及轉殖效率之影響.................19 (五)轉殖含活性胜肽(VVYP)Gy5基因及RNAi基因對大豆球蛋白之影響......................................................19 四、調查項目..............................................19 五、試驗設計與統計分析....................................19 六、少量基因組(genomic)DNA 之萃取.......................19 七、簡易基因組DNA 之萃取..................................20 八、總量蛋白質(total proteins)之萃取....................20 九、SDS-PAGE 電泳.........................................21 十、轉殖株之檢定..........................................21 (一) 聚合酶連鎖反應 (polymerase chain reaction, PCR)..21 (二) 高品質質體DNA 之萃取...............................22 (三) 探針之製備.........................................22 (四) 南方墨點法.........................................23 (五) 西方墨點法.........................................23 結果......................................................25 一、影響大豆農桿菌轉殖效率因子之探討......................25 (一) 大豆基因轉殖及再生流程.............................25 (二) 抗生素對大豆子葉存活率之影響.......................25 (三) 感染菌液中添加AS對芽體再生之影響...................26 (四) 抗生素篩選時期對芽體再生之影響.....................26 (五) 傷害處理對芽體再生之影響...........................26 (六) 感染菌液中添加AS對轉殖效率之影響...................27 (七) 抗生素篩選時期對轉殖效率之影響.....................27 (八) 傷害處理對轉殖效率之影響...........................27 二、CHI3A轉殖株之分子檢定與農藝性狀調查...................27 (一) 分子檢定...........................................27 (二) 農藝性狀調查.......................................28 (三) CHI3A轉植株的後裔植株之分析........................29 1. 以抗生素(kanamycin)篩選轉殖大豆後代之同質品系........29 2. CHI3A轉殖株後代(T1)之PCR分析.........................29 三、轉殖含活性胜肽(VVYP)Gy5基因及RNAi基因對大豆球蛋白之影響........................................................29 (一) 轉殖株之PCR分析....................................29 (二) 轉殖株的後裔植株之分析.............................30 1. 以抗生素(hygromycin)篩選轉殖大豆後代之同質品系.......30 2. 大豆(CRWD)種子不同發芽階段蛋白質之SDS-PAGE與西方墨點法分析─蛋白質檢測系統建立..................................31 討論......................................................33 參考文獻..................................................38 表........................................................44 圖........................................................57 附錄......................................................76 表一、篩選轉殖株的引子序列................................44 表二、抗生素對大豆(CRWD)子葉存活率(%)之影響...........45 表三、添加acetosyringone (AS)對大豆芽體再生之影響.........46 表四、抗生素篩選時期對芽體再生之影響......................47 表五、傷害處理對芽體再生之影響............................48 表六、添加actosyringone (AS)對大豆基因轉殖效率之影響......49 表七、抗生素篩選時期對大豆基因轉殖效率之影響..............50 表八、傷害處理對大豆基因轉殖效率之影響....................51 表九、T0轉基因植株之農藝性狀調查..........................52 表十、轉殖CHI3A基因T1植株之PCR分析........................54 表十一 、大豆CRWD農桿菌基因轉殖效率(%)..................55 表十二、轉殖Gy5- 10vp及Gy1p- G2/3i基因之大豆T1植株之抗生素篩選結果....................................................56 圖一、大豆(CRWD)之農桿菌轉殖再生流程。..................57 圖二、大豆(CRWD)子葉經hygromycin抗生素處理一個月後之生長情形........................................................58 圖三、不同傷害處理子葉節生長之情形。......................59 圖四、利用PCR擴增抗生素基因(NPT II)篩選大豆轉殖株(T0).60 圖五、利用PCR擴增目標基因(CHI3)篩選大豆轉殖株(T0).....61 圖六、轉基因植株以限制酵素SphI剪切以CHI3為探針進行南方墨點法分析......................................................62 圖七、CHI3A T0轉殖株溫室生長情形..........................63 圖八、大豆(CRWD)種子經kanamycin篩選一星期後之生長情形...64 圖九、利用PCR擴增目標基因篩選T1大豆轉殖株.................65 圖十、利用PCR擴增抗生素基因篩選T0大豆轉殖株...............66 圖十一、利用PCR擴增目標基因篩選T0大豆轉殖株...............67 圖十二、利用PCR擴增目標基因篩選T0大豆轉殖株...............68 圖十三、大豆CRWD(WT)種子經hygromycin篩選一星期後之生長情形........................................................69 圖十四、大豆CRWD(WT)種子經hygromycin篩選一星期後之生長情形........................................................70 圖十五、T1種子經hygromycin(50 ppm)篩選一星期後之生長情形........................................................71 圖十六、摘取子葉之方法(發芽後第七天子葉生長情形)........72 圖十七、發芽七天(A)及十天(B)摘取子葉後大豆植株生長情形73 圖十八、不同發芽階段大豆種子(CRWD)子葉蛋白質之電泳分析..74 圖十九、利用西方墨點法分析大豆種子不同發芽階段儲藏性蛋白質之變化......................................................75 | zh_TW |
dc.language.iso | en_US | zh_TW |
dc.publisher | 農藝學系所 | zh_TW |
dc.relation.uri | http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200816170900 | en_US |
dc.subject | soybean | en_US |
dc.subject | 大豆 | zh_TW |
dc.subject | agrobacterium transformation | en_US |
dc.subject | 農桿菌轉殖 | zh_TW |
dc.title | 利用農桿菌媒介轉殖法改造大豆種子組成分 | zh_TW |
dc.title | Engineering of soybean seed compositions through Agrobacterium - mediated transformation method | en_US |
dc.type | Thesis and Dissertation | zh_TW |
item.openairetype | Thesis and Dissertation | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en_US | - |
item.grantfulltext | none | - |
item.fulltext | no fulltext | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | 農藝學系 |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.