Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3693
標題: 仿生性高分子液胞之製備及其結構探討
Preparation and Structural Characterization of Biomimetic Polymer Vesicles
作者: 莊智凱
Chuang, Chih-Kai
關鍵字: polymer vesicles;高分子液胞;nanoscale vesicles;奈米級液胞
出版社: 化學工程學系所
引用: [1] Discher B. M., Won Y. Y., Ege D. S., Lee J. C-M, Bates F. S., Discher D. E., Hammer D. A., Science 1999, 284, 1143-1146. [2] Jain S., Bates F. S., Science 2003, 300, 460-464. [3] Discher D. E., Eisenberg A., Science 2002, 297, 967-973. [4] Yildiz M. E., Prud'homme R. K., Robb I., Adamson D. H., Polym. Adv. Technol. 2007, 18, 427-432. [5] Bangham A. D., Standish M. M., Watkins J. C., J. Mol. Biol. 1965, 13, 238-252. [6] Chiu H. C., Lin Y. W., Huang Y. F., Chuang C. K., Chern C. S., Angew. Chem. Int. Ed. 2008, 47, 1875-1878. [7] New RRC, Liposomes: a practical approach 1990, Oxford Univ. Press. [8] Ahmed F., Discher D. E., J. Controlled Release 2004, 96, 37-53. [9] Zhang L., Eisenberg A., Science 1995, 268, 1728-1731. [10] Holder S. J., Hiorns R. C., Sommerdijk N. A. J. M., Williams S. J., Jones R. G., Nolte R. J. M., Chem. Commum. 1998, 1445-1446. [11] Battaglia G., Ryan A. J., J. Phys. Chem. B. 2006, 110, 10272-10279. [12] Stoenescu R., Meier W., Chem. Commum. 2002, 3016-3017. [13] Uzun O., Xu H., Jeoung E., Thibault R. J., Rotello V. M., Chemi. Eur. J. 2005, 11, 6916-6920. [14] Li Y., Lokitz B. S., McCormick C. L., Angew. Chem. Int. Ed. 2006, 45, 5792-5795. [15] Choi H. J., Montemagno C. D., Nano Letters 2005, 5, 2538-2542. [16] Dufes C., Schätzlein A. G., Tetley L., Gray A. I., Watson D. G., Oliver J. C, Couet W., Uchegbu I. F., Pharmaceutical Research 2000, 17, 1250-1258. [17] Graff A., Sauer M., Gelder P. V., Meier W., Proc. Natl. Acad. Sci. USA 2002, 99, 5064-5068. [18] Ringsdorf H., Schlarb B.,Venzmer J., Angew. Chem. Int. Ed. 1988, 27, 113-158. [19] Meier W., Chem. Soc. Rev. 2000, 29, 295-303. [20] Bellomo E. G., Wyrsta M. D., Pakstis L., Pochan D. J., Deming T. J., Nat. Mater. 2004, 3, 244-248. [21] Cornelissen J. J. L. M., Fischer M., Sommerdijk N. A. J. M., Nolte R. J. M., Science 1998, 280, 1427-1430. [22] Discher D. E., Ahmed F., Annu. Rev. Biomed. Eng. 2006, 8, 323-341. [23] Ahmed F., Pakunlu R. I., Srinivas G., Brannan A., Bates F., Klein M. L., Minko T., Discher D. E., Molecular pharmaceutics 2006, 3, 340-350. [24] Ahmed F., Pakunlu R. I., Brannan A., Bates F., Minko T., Disher D. E., J. Control. Release 2006, 116, 150-158. [25] Kita-Tokarczyk K., Grumelard J., Haefele T., Meier W., Polymer 2005, 46, 3540-3563. [26] Reeves J. P., Dowben R. M., J. Cell Phisiol. 1969, 73, 49-60. [27] Napoli A., Boerakker M. J., Tirelli N., Nolte R. J. M., Sommerdijk N. A. J. M., Hubbell J. A., Langmuir 2004, 20, 3487-3491. [28] Nikova A. T., Gordon V. D., Cristobal G., Talingting M. R., Bell D. C., Evans C., et al., Macromolecules 2004, 37, 2215-2218. [29] Lee J. C-M, Bermudez H., Discher B. M., Sheehan M. A., Won Y. Y., Bates F. S., Discher D. E., Biotechnol. Bioeng. 2001, 73, 135-145. [30] Reinecke A. A., Döbereiner H-G, Langmuir 2003, 19, 605-608. [31] Dimova R., Seifert U., Pouligny B., Förster S., Döbereiner H-G, Eur. Phys. J. E. 2002, 7, 241-250. [32] Ghoroghchian P. P., Li G., Levine D. H., Davis K. P., Bates F. S., Hammer D. A., Therien M. J., Macromolecules 2006, 39, 1673-1675. [33] Lin J. J., Silas J. A., Bermudez H., Milam V. T., Bates F. S., Hammer D. A., Langmuir 2004, 20, 5493-5500. [34] Ghoroghchian P. P., Frail P. R., Susumu K., Blessington D., Brannan A. K., Bates F. S., Chance B., Hammer D. A., Therien M. J., Proc. Natl. Acad. Sci. USA 2005, 102, 2922-2927. [35] Napoli A., Valentini M., Tirelli N., Müller M., Hubbell J. A., Nat. Mater. 2004, 3, 183-189. [36] Arifin D. R., Palmer A. F., Biomacromolecules 2005, 6, 2172-2181. [37] Menger F. M., Angelova M. I., Acc. Chem. Res. 1998, 31, 789-797. [38] Reiner J. E., Wells J. M., Kishore R. B., Pfefferkorn C., Helmerson K., Proc. Natl. Acad. Sci. USA 2006, 103, 1173-1177. [39] Battaglia G., Ryan A. J., J. Am. Chem. Soc. 2005, 127, 8757-8764. [40] Kremer J. M. H., Van der Esker M. W., Pathmamanoharan C, Wiersema PH, Biochemistry 1977, 16, 3932-3935. [41] Meng F., Hiemstra C., Engbers G. H. M., Feijen J., Macromolecules 2003, 36, 3004-3006. [42] Meng F., Engbers G. H. M., Feijen J., J. Control. Release 2005, 101, 187-198. [43] Mulkey D. K., Henderson A., Ritucci N. A., Putnam RW, Dean JB, Am. J. Physiol. 2004, 286, C940-C51. [44] Yip K. P., Kurtz I., Methods Cell Biol. 2002, 70, 417-427. [45] Morgan C. G., Mitchell A. C., Chromosome Res. 1996, 4, 261-263. [46] Swanson J. A., Methods Microbiol 2002, 31, 1-18. [47] Najafi F., Sarbolouki M. N., Biomaterials 2003, 24, 1175-1182. [48] Christian N. A., Milone M. C., Ranka S. S., Li G., Frail P. R., Davis K. P., Bates F. S., Therien M. J., Ghoroghchian P. P., June C. H., Hammer D. A., Bioconjugate Chem. 2007, 18, 31-40. [49] Bozzola J. J., Russell L. D., Electron microscopy: principles and techniques for biologists 1982, Jones and Bartlett Publishers. [50] Olbrich K., Rawicz W., Needham D., Evans E., Biophysi. J. 2000, 79, 321-327. [51] Bermudez H., Brannan A. K., Hammer D. A., Bates F. S., Discher D. E., Macromolecules 2002, 35, 8203-8208. [52] Srinivas G., Disher D. E., Klein M. L., Nat. Mater. 2004, 3, 638-644. [53] Vriezema D. M., Angew. Chem. Int. Ed. 2007, 46, 7378-7382. [54] Sauer M., Haefele T., Graff A., Nardin C., Meier W., Chem. Commum. 2001, 2452-2453. [55] Broz P., Driamor S., Zuegler J., Marsch S., Meier W., Hunziker P., Nano Letter 2006, 6, 2349-2353. [56] Meier W., Nardin C., Winterhalter M., Angew. Chem. Int. Ed. 2000, 39, 4599-4602. [57] Winterhalter M., Hilty C., Bezrukov S. M., Nardin C., Meier W., Fournier O., Talanta 2001, 55, 965-971. [58] Mecke A., Dittrich C., Meier W., Soft Matter 2006, 2, 751-759. [59] Adalsteinsson O., Lamotte A., Baddour R. F., Pollak C. K., Colton A., Whitesides G. M, J. Molecular Catalysis 1979, 6, 199-225. [60] Jenekhe S. A.,Chen X. L., Science 1998, 279, 1903-1907. [61] Yang J., Piñol R., Gubellini F., Lévy D., Albouy P. A., Keller P., Li M. H., Langmuir 2006, 22, 7907-7911. [62] Zhang Y., Jiang M., Zhao J., Wang Z., Dou H., Chen D., Langmuir 2005, 21, 1531-1538.
摘要: 
本研究所採用脂質共聚合高分子poly(acrylic acid-co-distearin acrylate),是以聚丙烯酸poly(acrylic acid, PAAc)為主鏈,於側鏈上修飾不同比例之二硬脂酸甘油酯 (distearin),可藉由改變製備方法製備出微米級及奈米級高分子液胞 (polymer vesicles)。然而利用二次乳化法所製備微米級高分子液胞,藉由光學顯微鏡、雷射掃描式共軛焦顯微鏡 (LSCM) 觀察其形態,並證實其具有內部含水隔間的液胞結構。此高分子液胞具有許多特質,其一為具有高度的結構穩定性,於真空乾燥後都能維持中空球體結構,甚至於高離子強度環境也能維持液胞結構。可藉由調整有機共溶劑的混合比例及增加共聚物中之接枝比率,以製備不同粒徑大小之微米級高分子液胞。此高分子液胞系統具有pH應答,於高pH值環境形態會由液胞形變為微胞,此時會迫使原包覆水溶性物質物擴散釋放。
另一製備方法為溶劑置換法可製備出奈米級粒子,藉由穿透式電子顯微鏡 (TEM) 及掃描式電子顯微鏡 (SEM) 觀察其奈米粒子形態;並以動態光散射粒徑分析儀(DLS)、螢光光譜儀等分析奈米液胞於不同pH值下其性質及結構變化。將包覆親水性物質的奈米粒子經由TEM、LSCM影像證實其為液胞結構;利用DLS分析可證實奈米液胞膜具有酸鹼應答特性,於高pH值環境下其液胞胞膜會澎潤使粒徑增加,DSA含量較多的高分子所形成的奈米高分液胞其胞膜較緻密。

In this study, lipid copolymer poly(acrylic acid-co-distearin acrylate) was synthesized by using poly(acrylic acid) as the backbone modified with different ratio of distearin as the side chain. Through various approaches to preparation, we got microscale and nanoscale polymeric vesicles. By double emulsion method, microscale vesicles were prepared and observed to be hollow spherical structures through SEM images. Via encapsulating hydrophilic fluorescent material into the vesicles and observed by LSCM, aqueous compartments within the polymeric vesicles were further confirmed. This kind of microscale polymeric vesicles was highly stable at high salt concentration and the hollow sphere structures still remained after lyophilization. The vesicles size can be controlled by adjusting either the THF/CHCl3 ratio used during emulsification or the DSA content content of copolymers. However, when the polymeric vesicles consisted in high pH environments, the polymeric spheres turned vesicles into solid micelles and then the hydrophilic materials within the vesicles was also released at the same time. By solvents replacement method, nanoscale vesicles were prepared and observed to be collapsed nanosphere structures through SEM images. Via encapsulating hydrophilic fluorescent material into the vesicles and observed by TEM and LSCM, aqueous compartments within the polymeric vesicles were also confirmed. When the nanoscale polymeric vesicles consisted in high pH environments, the membrane exhibited swelling behavior. As a result, nanoscale polymeric vesicles with higher DSA contents would be more rigid.
URI: http://hdl.handle.net/11455/3693
其他識別: U0005-1908200814065300
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.