Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/36952
標題: | 巴拉刈抗性水稻突變體之篩選與抗性機制 Screening and resistance mechanism of paraquat-resistant rice mutants |
作者: | 許軍駐 Hsu, Chun-Chu |
關鍵字: | paraqaut;巴拉刈 | 出版社: | 農藝學系所 | 引用: | 參考文獻 費雯綺、王喻其。2004。植物保護手冊。台中,台灣。行政院農業委 員會農業藥物毒物試驗所。 蔣永正、蔣慕琰。2006。農田雜草與除草劑要覽。台中,台灣。行政 院農業委員會農業藥物毒物試驗所。 蔣永正、蔣慕炎、朱德民。1994。台灣野塘蒿(Erigeron sumatrensis)對 巴拉刈(paraquat) 抗藥性之研究。中華民國雜草學會會刊 15(1):1-19。 Alizadeh, H. M., C. Preston, and S. B. Powles. 1998. paraquat-resistant biotypes of Hordeum glaucum from zero-tillage wheat. Weed Res. 38:139-142. Ashton, F. M. and A. S. Craft. 1981. “Bipyridyliums”.Mode of action of herbicides, Wiley, New York, p164-179. Amsellem, Z., M. A. K. Janen, A. R. J. Driesenaar, and J. Gressel. 1993. Developmental variability of photooxidative stress tolerance in paraquat-resistant Conyza. Plant Physiol. 103:1097-1106 Barrett, S. C. H. 1982. Genetic variation in weeds. (eds R. Charudattan, and H. Walker). Biological control of weeds with plant pathogens. pp. 73-98. John Wiley, NewYork, U. S. A. Bishop, T., S. B. Powles, and G. Cornic. 1987. Mechanism of paraquat resistance in Hordeum glaucum. Ⅱ. Paraquat uptake and translocation. Aust. J. plant Physiol. 14:539-547. Burke J. J., P. E. Gamble, J. L. Hatfield, and J. E. Quisenberry. 1985. Plant morphological and biochemical responses to field water deficits I. responses of glutathione reductase activity and paraquat sensitivity. Plant Physiol. 79:415-419. Cantavenera, M. J., I. Catanzaro, V. Loddo, L. Palmisano, and G. Sciandrello. 2007. Photocatalytic degradation of paraquat and genotoxicity of its intermediate products. J. Photochem. Photobiol. A Chem. 185:277-282. Carr, R. J. G., R. F. Bilton, and T. Atkinson. 1985. Mechanim of biodegradation of paraquat by Lipomyces starkeyi. Appl. Environ. Microbiol. 49:1290-1294. Chase, C. A., T. A. Bewick, and D. G. Shilling. 1998. Characterization of paraquat resistance in Solanum americanum Mill. Ⅱ. Evidence for a chloroplast mechanism. Pestic. Biochem. Physiol. 60:23-30. Chia, L. S., J. E. Thompson, and E. B. Dumbroff. 1981. Simulation of the effects of leaf senescence on membranes by treatment with paraquat. Plant Physiol. 67:415-420. Chiang, Y. J., Y. X. Wu, M. Y. Chiang, and C. Y. Wang. 2008. Role of antioxidative system in paraquat resistance of tall fleabane (Conyza sumatrensis) . Weed Sci. 56:350-355. Chun, J. C., S. Y. Ma, S. E. Kim, and H. J. Lee. 1997. Physiological responses Rehmannia glutinosa to paraquat and its tolerance mechanisms. Pestic. Biochem. Physiol. 59:51-63. Dainty, J., A. B. Hope, and C. Denby. 1960. Ionic relations of cells of Chara australis. Ⅱ. The indiffusible anions of the cell wall. Aust. J. Biol. Sci. 13:267-276. Fuerst, E. P. and K. C. Vaughn. 1990. Mechanism of paraquat resistance. Weed Technol. 4:150-156. Fuerst, E. P. and M. A. Noman. 1991. Interaction of herbicides with photosynthetic electron transport. Weed Sci. 39:458-464. Funderburk, H. H. and G. A. Bozarth. 1967. Review of metabolism and decomposition of diquat and paraquat. J. Agric. Food Chem. 15:563-567. Golbeck, J. H. 1992. “Structure and Function of Photosystem I”. Plant Mol. Biol. 43,293-324. Goto, M., A. H. Gordon, and A. Chesson. 1991. Changes in cell-wall composition and degradability of sorghum during growth and maturation. J. Sci. Food Agric. 54:47-60. Hara, S., N. Sasaki, D. Takase, S. Shiotsuka, K. Ogata, K. Futagami, and K. Tamura. 2007. Rapid and sensitive HPLC method for the simultaneous determination of paraquat and diquat in human serum. Anal. Sci. 23:523-526. Harvey, B. M. R., J. Muldoon, and D. B. Harper. 1978. Mechanism of paraquat tolerance in perennial ryegrass. І. Uptake, metabolism and translocation of paraqaut Plant Cell Environ. 1:203-209. Hart, J. J., J. M. D. Tomaso, D. L. Linscott, and L. V. Kochian. 1992. Characterization of the transport and cellular compartmentation of paraquat in roots of intact maize seedlings. Pestic. Biochem. Physiol. 43:212-222. Hart, J. J., J. M. D. Tomaso, and L. V. Kochian. 1993. Characterization of paraquat transport in protoplasts from maize (Zea mays L.) suspension cells. Plant physiol. 103:963-969. Hart, J. J. and J. M. Tomaso. 1994. Sequestration and oxygen radical detoxification as mechanisms of paraquat resistance. Weed Sci. 42:277-284. Heap, I. M. 2007. International survey of herbicide resistant weeds. http://www.weedscience.com. Hess, F. D. and R. H. Falk. 1990. Herbicide deposition on leaf surfaces. Weed Sci. 38:280-288. Iturbe-Ormaetxe, I., P. R. Escuredo, C. Arrese-lgor, and M. Becana. 1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant physiol. 116:173-181. Http://www.weedscience.com. 2009.06.18 09:00 Taiwan. Ismail, B. S., T. S. Chuah, and H. H. Khatijah. 2001. Metabolism, uptake and translocation of 14C-paraquat in resistant and susceptible biotypes of Crassocephalum crepidioides (Benth.) S. Moore. Weed Bio. Manag. 1:176-181. Jansen, M. A. K., Y. Shaaltiel, D. Kazzes, O. Canaani, S. Malkin, and J. Gressel. 1989. Increased tolerance to photoinhibitory light in paraquat-resistant Conyza bonariensis Measured by photoacoustic spectroscopy and 14CO2-fixation. Plant Physiol. 91:1174-1178. Joy, K. W. 1964. Translocation in Sugar-beet І. Assimilation of 14CO2 and distribution of materials from leaves. J. Exp. Bot. 45:485-494. Kao, S. M. and H. M. Hassan. 1985. Biochemical characterization of a paraquat-tolerant mutant of Escherichia coli. J. Biol. Chem. 260:10478-10481. Kearney, P. C., J. M. Ruth, Q. Zeng, and P. Mazzocchi. 1985. UVOzonation of paraquat. J. Agric. Food Chem. 33:953-957. Lasat, M. M., J. M. D. Tomaso, J. J. Hart, and L. V. Kochian. 1997. Evidence for vacuolar sequestration of paraquat in roots of a paraquat-resistant Hordeum glaucum biotype. Physiol. Plant. 99:255-262. Lascano, H. R., L. D. Gómez, L M. Casano, and V. S. Trippi. 2003. Effect of photooxidative stress induced by paraquat in two wheat cultivars with differential tolerance to water stress. Plant Sci. 164:841-848. Lee, S. J., A. Katayama, and M. Kimura. 1995. Microbial degradation of paraquat sorbed to plant residues. J. Agric. Food Chem. 43:1343-1347. Lewinsohn, E. and J. Gressel. 1984. Bwnzyl viologen-mediated counteraction of diquat and paraquat phytotoxicities. Plant Physiol. 76:125-130. Mills, W. R. and K. W. Joy. 1980. A rapid method for isolation of purified, physiologically active chloroplasts, used to study the intracellular distribution of amino acids in pea leaves. Planta 148:75-83. Minton, K, W., H. Tabor, and C. W. Tabor. 1990. Paraqaut toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc. Natl. Acad. Sci. U.S.A. 87:2851-2855. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410. Moctezuma, E., E. Leyva, E. Monreal, N. Villegas, and D. Infante. 1999. Photocatalytic degration of the herbicide “paraquat”. Chemosphere 39:511-517. Normon, M. A., R. J. Smeda, K. C. Vaughn, and E. P. Fuerst. 1994. Differential movement of paraquat in resistant and sensitive biotypes of Conyza. Pest. Biochem. Physiol. 50:31-42. Norman, M. A., E. P. Fuerst, R. J. Smeda, and K. C. Vaughn. 1993. Evaluation of paraquat resistance mechanisms in Conyza. Pestic. Biochem. Physiol. 46:236-249. Palatnik, J. F., E. M. Valle, and N. Carrillo. 1997. Oxidative stress causes ferredoxin-NADP+ reductase solubilization from the thylakoid membranes in methyl viologen-treated plants. Plant Physiol. 115: 1721-1727. Palatnik, J. F., V. B. Tognetti, H. O. Poli, R. E. Rodriguez, N. Blanco, M. Gattuso, MR. Hajirezaei, U. Sonnewald, E. M. Valle, and N. Carrillo. 2003. Transgenic tobacco plants expressing antisense ferredoxin- NADP(H) reductase transcripts display increased susceptibility to photo-oxidative damage. Plant J. 35: 332-341. Ricketts, D. C. 1999. The microbial biodegradation of paraquat in soil. Pestic. Sci. 55:566-614. Preston, C., J. A. M. Holtum, and S. B. Powles. 1992. On the mechanism of resistance to paraquat in Hordeum glaucum and H. Ieporinum. Plant Physiol. 100:630-636. Preston, C., C. J. Soar, I. Hidayat, K. M. Greenfield, ands. B. Powles. 2005. Differential translocation of paraquat in paraquat-resistant populations of Hordeum leporinum. Weed Res. 45:289-295. Rodriguez, R. E., A. Lodeyro, H. O. Poli, M. Zurbriggen, M. Peisker, J. F. Palatnik, V. B. Tognetti, H. Tschiersch, MR. Hajirezaei, E. M. Valle, and N. Carrillo. 2007. Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. Plant Physiol. 143: 639-649. Roberts, T. R., J. S. Dyson, and M. C. G. Lane. 2002. Deactivation of the biological activity of paraquat in the soil environment: a review of long-term environmental fate. J. Agric. Food Chem. 50:3623-3631. Schreiber, U., W. Bilger, and C. Neubauer. 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis (eds E. D. Schulze, and M. M. Caldwell), pp. 49-70. Springer-Verlag, Berlin. Seefeldt, S. S., J. E. Jensen, and E. P. Fuerst. 1995. Log-logisic analysis of herbicide dose-response relationships. Weed Technol. 9:218-227. Slade, P. 1965. The photochemical degradation of paraquat. Nature 207:515-516. Slade, P. 1966. The fate of paraqaut applied to plants. Weed Res. 6:158-167. Smisek, A., C. Doucet, M. Jones, and S. Weaver. 1998. Paraquat resistance in horseweed (Conyza Canadensis) and Virginia pepperweed (Lepidium virginicum) from Essex County, Ontario. Weed Sci. 46:200-204. Soar, C. J., J. Karotam, C. Preston, and S. B. Powles. 2003. Reduced paraquat translocation in paraquat resistant Arctotheca calendula (L.) Levyns is a consequence of the primary resistance mechanism, not the cause. Pestic. Biochem. Physiol. 76:91-98. Suntres, Z. E. 2002. Role of antioxidants in paraquat toxicity. Toxicology 180:64-77. Szigeti, Z. and E. Lehoczki. 2003. A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pest Manag. Sci. 59:451-458. Tanaka, T., H. Chisaka, and H. Saka. Movement of paraquat in resistant and susceptible biotypes od Erigeron philadelphicus and E. Canadensis. Physiol. Plant. 66:605-608. Turcsányi, E., E. Darkó, G. Borbély, and E. Lehoczki. 1998. The activity of oxyradical-detoxifying enzymes is not correlated with paraquat resistance in Conyza Canadensis (L.) Cronq. Pestic. Biochem. Physiol. 60:1-11. Váradi, G., E. DarKó, and E. Lehoczki. 2000. Changes in the xanthophylls cycle and fluorescence quenching indicate light-dependent early events in the action of paraquat and the mechanism of resistance to paraquat in Erigeron Canadensis (L.) Cronq. J. Plant Physiol. 123:1459-1469. Wu, Y. X., Y. J. Chiang, M. Y. Chiang, and C. Y. Wang. 2007. Responses of antioxidative system to increasing dosage pf paraquat in resistant tall fleabane (Conyza sumatrensis (Retz.) Walker). Plant Prot. Bull. 49:229-243. Ye, B. and J. Gressel. 2000. Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta 211:50-61. Yu, Q., A. Cairns, and S. B. Powles. 2004. Paraquat resistance in a population of Lolium rigidum. Func. Plant Biol. 31:247-254. | 摘要: | 巴拉刈為廣泛使用的接觸型非選擇性除草劑,僅可施用於植前或 是非耕地。本研究以台農67 號經NaN3 誘變之1,343 個突變品系(M7) 為材料,進行對巴拉刈除草劑初步篩選後所得13 個品系進一步試驗。13 個水稻突變品系依據不同生育期之傷害指數(injury index)及分蘗期光系統Ⅱ抑制(photosystem Ⅱ inhibition)試驗結果,挑選出對巴拉刈具有抗性(R)及感性(S)之突變品系,由於先前本研究室篩選所得之突變品系抗、感性差異較大,且表現穩定,故後續抗性機制研究均以先前選出之72-16-4(R)與1192-11-5(S)為材料進行研究。本研究結果顯示幼苗之抗性機制可能原因包括:(1) 截收與吸收:72-16-4(R)幼苗葉片截收能力略低於TNG67 和1192-11-5(S)。(2) 轉運:72-16-4(R)處理初期組織受損較輕微,因而較TNG67 和1192-11-1(S)易將巴拉刈轉運至非處理部位,顯然轉運不是決定抗性之因素。(3) 代謝:TNG67、72-16-4(R)1192-11-5(S)幼苗對於14C-paraquat 代謝能力沒有明顯差異,證明代謝不是影響抗性之因素。另ㄧ方面,分蘗期之抗性可能機制包括:(1) 截收與吸收:抗性突變體葉片不具有長的毛狀體構造,因此對於藥劑截收能力較 1192-11-5(S)弱;此外,由於抗性植株葉片蠟質含量較高,推測其吸收藥劑能力較1192-11-5(S)弱。(2) 轉運:抗、感性突變體葉片細胞壁與巴拉刈之結合能力沒有差異,而在三種水稻材料中大部分巴拉刈不進行轉運。証明轉運不是影響抗性之因素。(3) 代謝:TNG67、72-16-4(R)和 1192-11-5(S)分蘗期葉片、液胞和葉綠體對於14C-paraquat代謝能力沒有明顯差異,證明代謝不是影響抗性之因素。综合以上結果,抗感性水稻材料之葉片對於巴拉刈之截收與吸收差異,可能是影響抗性之部分原因。 Paraquat is a non-selective herbicide widely used in weed control. In order to improve and extend the use of this herbicide, paraquat-resistant (R) (72-16-4) and susceptible (S) (1192-11-5) rice mutants were selscted from the NaN3-mutated rice pool of cv. Tainung 67 (TNG67) in Taiwan. The mechanism of paraquat resistance in 4-leaf rice seedlings was proven that paraquat interception by seedling leaves of R-mutant was lower than S-mutant, whereas both translocation and metabolism of paraquat were not the factors influencing resistance. In addition, study on the resistance mechanism of rice plants at tillering stage showed that the lower paraquat absorption of R-mutant resulted from high wax content might partially contribute to the paraquat resistance. According to the experimental results of rice plants at two different stages suggested that retardation of paraquat interception and absorption might be a partial factor related to paraquat resistance, whereas both translocation and metabolism were excluded. |
URI: | http://hdl.handle.net/11455/36952 | 其他識別: | U0005-2307200909492200 |
Appears in Collections: | 農藝學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.