Please use this identifier to cite or link to this item:
標題: 錫-9wt%鋅銲料之電遷移研究
Electromigration study of Sn-9 wt%Zn solder
作者: 洪裕民
Hung, Yu-Min
關鍵字: Sn-9Zn solder;Sn-9Zn 銲料;electromigration;microstructural;電遷移;微結構
出版社: 化學工程學系所
引用: [1] Rao R. Tummala, “Fundamentals of Microsystems Packaging”, McGraw -Hill, New York, (2000). [2] ”International Technology Roadmap for Semiconductors”, Semicond- uctor Industry Association, (1999). [3] H. B. Huntington, in “Diffusion in Solids : Recent Developments”, edited by A. S. Nowick and J. J. Burton, Academic Press, New York, p. 303-352, (1975). [4] P. S. Ho and T. Kwok, “Electromigration studies of aluminum -intermetallic structure”, Extended Abstracts of the Conference on Solid State Devices and Materials, Vol. 16, p. 55, (1984). [5] 張淑如,“鉛對人體的危害”,勞工安全衛生簡訊,民國84年,第12期,pp.17-18。 [6] Lead-free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Science, Ann Arbor, Michigan, (1997). [7] T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, “Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization”, J. Appl. Phys., Vol. 90(9), p. 4502, (2001). [8] J. W. Nah, K. Paik, J. O. Suh, and K. N. Tu, “Mechanism of electromigration-induced failure in the 97Pb-3Sn and 37Pb-63Sn composite solder joints”, J. Appl. Phys., Vol. 94(12), p. 7560, (2003). [9] H. B. Huntington and A. R. Grone, “Current-induced marker motion in gold wires”, J. Phys. Chem. Solids., Vol. 20(76), p. 76, (1961). [10] J. R. Black, IEEE Trans. on Electron Devices, ED-16, p. 348, (1969). [11] C. K. Hu and J. M. E. Harper, “Copper interconnections and reliability”, Mater. Chem. Phys., Vol. 52, p. 5, (1998). [12] K. Zeng and K. N. Tu, “ Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. & Eng. R, Vol. 38, p. 55, (2002). [13] S. Brandenburg and S. Yeh, Proceedings of the Surface Mount Internatuonal Conference and Exposition, p. 337, (1998). [14] C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, “Microstructure- electromigration correlateion in a thin stripe of eutectic SnPb solder stressesd between Cu electrodes”, Appl. Phys. Lett., Vol. 75, p. 58, (1999). [15] W. J. Choi, E. C. C. Yeh, and K. N. Tu, “Electromigration of flip chip solder bump on Au/Ni(V)/Al thin film under bump metallization”, proceedings-electronic-components & Technology Conference, p. 1201, (2002). [16] H. Ye, C. Basaran, and D. C. Hopkins, IEEE Trans. on Components and Packaging Tech., Vol. 26, p. 673, (2003). [17] J. R. Lloyd and J. J. Clement, “Electromigration in copper conductors”, Thin Solid Films, Vol. 262, p. 135, (1995). [18] K. N. Tu, “Recent advances on electromigration in very-large-scale- integration of interconnects”, J. Appl. Phys., Vol. 94(9), p. 5451, (2003). [19] C. Y. Liu, Chih Chen, and K. N. Tu, “Electromigration in Sn-Pb solder stripes as a function of alloy compositeon”, J. Appl. Phys., Vol. 88, p. 5703, (2000). [20] C. C. Lu, S. J. Wang, and C. Y. Liu, “Electromigration studies on Sn(Cu) alloy lines”, J. Electron. Mater., Vol. 32(12), p. 1515, (2003). [21] Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in eutectic SnPb solder lines”, J. Appl. Phys.,Vol. 89, 4332, (2001). [22] S. W. Chen and C. M. Chen, “Electromigration effects upon interfacial reactions”, JOM, Vol. 55(2), p. 62, (2003) [23] R. Agarwal and K. N. Tu, “Electromigration in eutectic tin-lead solder lines at device temperature”, Proceedings of the 10th International Symposium on Advanced Packaging Materials, Irvine, CA, p. 16, (2005). [24] R. Agarwal, Shengquan E. Ou, and K. N. Tu, “Electromigration and critical product in eutectic SnPb solder lines at 100℃”, J. Appl. Phys., Vol. 100, 024909, (2006). [25] Y. C. Hsu, C. K. Chou, and C. Chen, “Electromigration in Pb-free SnAg3.8Cu0.7 solder stripes”, J. Appl. Phys., Vol. 98, 033523 (2005). [26] C. M. Chen, C. C. Huang, C. N. Liao, and K. M. Liou, “Effects of copper doping on microstructural evolution in eutectic SnBi solder stripes under annealing and current stressing”, J. Electron. Mater., Vol. 36(7), p. 760, (2007). [27] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, “Electromigration failure in flip chip solder joints due to rapid dissolution of copper”, J. Mater. Res., Vol. 18(11), p. 2544, (2003). [28] Y. H. Hsiao, Y. C. Chuang, and C. Y. Liu, “Prevention of electromigration-induced Cu pad dissolution by using a high electromigration-resistance ternary Cu-Ni-Sn layer”, Scripta. Mater., Vol. 54, p. 661, (2006). [29] W. J. Choi, E. C. C. Yeh, and K. N. Tu, “Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization”, J. Appl. Phys., Vol. 94(9), p. 5665, (2003). [30] L. T. Chen and C. M. Chen, “Electromigration study in the eutectic SnBi solder joint on the Ni/Au metallization”, J. Mater. Res., Vol. 21(4), p. 962, (2006). [31] J. W. Nah, J. O. Suh, and K. N. Tu, “Electromigration in flip chip solder joints having a thick Cu column bump and a shallow solder interconnect”, J. Appl. Phys., Vol. 100, 123513, (2006). [32] X. F. Zhang, J. D. Guo, and J. K. Shang, “Abnormal polarity effect of electromigration on intermetallic compound formation in Sn–9Zn solder interconnect”, Scripta Mater., Vol. 57, p. 513, (2007). [33] Q. L. Yang and J. K. Shang, “Interfacial segregation of Bi during current stressing of Sn-Bi/Cu solder interconnect”, J. Electron. Mater., Vol. 34(11), p. 1363, (2005). [34] S. M. Kuo and K. L. Lin, “Microstructure evolution during electromi- gration between Sn–9Zn solder and Cu”, J. Mater. Res., Vol. 22(5), p. 1240, (2003). [35] W. H. Lin, A. T. Wu, S. Z. Lin, T. H. Chuang, and K. N. Tu, “Electromigration in the flip chip solder joint of Sn-8Zn-3Bi on copper pads”, J. Electron. Mater., Vol. 36(7), p. 753, (2007). [36] Y. S. Kim, K. S. Kim, C. W. Hwanga, and K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys”, J. Alloy. Compd., Vol. 352, p. 237, (2003). [37] B. J. Lee, N. M. Hwang, and H. M. Lee, “Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation”, Acta Mater., Vol. 45, p. 1867, (1997). [38] C. M. Chen and C. C. Huang, “Effects of silver doping on electromigration of eutectic SnBi solder”, J. Alloy. Compd., Vol. 461, p. 235, (2008). [39] H. Gan and K. N. Tu, “Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples”, J. Appl. Phys., Vol. 97, 063514, (2005). [40] S. M. Kuo and K. L. Lin, “Polarity effect of electromigration on intermetallic compound formation in a Cu/Sn–9Zn/Cu sandwich”, J. Mater. Res., Vol. 23(4), p. 1087, (2008). [41] S. W. Chen, C. M. Chen, and W. C. Liu, “Electric current effects upon the SnCu and SnNi interfacial reactions”, J. Electron. Mater., Vol. 27(11), p. 1193, (1998). [42] C. M. Chen and S. W. Chen, “Electric current effects on Sn/Ag interfacial reactions”, J. Electron. Mater., Vol. 28(7), p. 902 (1999). [43] Eric A. Brandes, Smithells Metals Reference Book, sixth ed., Butterworth, Washington, DC, 1983. [44] F Seitz, D Turnbull, H Ehrenreich, and NL Peterson. Solid state physics, 22. New York (NY): Academic Press; 1968. [45] B. Chao, S. H. Chae, X. Zhang, K. H. Lu, J. Im, and P. S. Ho, “Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing”, Acta Mater., Vol. 55, p. 2805, (2007). [46] J. E. Lee, K. S. Kim, M. Inoue, J. Jiang, and K. Suganuma, “Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn-Zn eutectic alloy”, J. Alloy. Compd., in press. [47] I. Shohji, T. Nakamura, F. Mori, and S. Fujiuchi, “Interface reaction and mechanical properties of lead-free Sn-Zn alloy/Cu joints”, Materials Transactions, Vol. 43, No. 8, p. 1797, (2002). [48] P. S. Ho and T. Kwok, “Electromigration in metals”, Rep. Prog. Phys. Vol. 52, p. 301, (1989).
由於Zn是易氧化元素,導致Sn-9Zn銲料的潤濕性與抗氧化性不佳,一般為了改善其性質,會選擇添加第三種元素。因此本研究選擇添加Bi與Cu,即為Sn-8wt%Zn-3wt%Bi與Sn-9wt%Zn-1wt%Cu銲料進行電遷移實驗。在平均電流密度105A/cm2下,發現Sn-8Zn-3Bi銲料中Bi原子會先受到電流應力影響而遷移,並在陽極端發現累積,此行為亦減緩Sn所受之電遷移效應,延後Sn之電遷移。Sn-9Zn-1Cu銲料中,Cu會先與銲料中Zn反應生成CuZn5與Cu5Zn8,在通電之後,發現陰極附近孔洞生成,幾乎都發生在銲料內部Cu-Zn IMC(intermetallic compound)周圍。

Removing Pb from the electronics has became a global trend and the traditional SnPb solder will soon be replaced. The Sn-9Zn (in wt.%) solder alloy is one of the potential candidates because it has a melting point (198.5℃) that is closer to that of the conventional eutectic SnPb solder (183℃). The subject of this study is to investigate the microstructural evolution of the Sn-9Zn solder under current stressing with a current density of about 105 A/cm2. Two different cooling conditions, furnace and fan cooling, were used in the reflow of the solder, and by which coarse and fine Zn precipitates were formed in the solder, respectively. After current stressing, Sn extrusion was observed, suggesting that Sn is the dominant moving species under electromigration. In contrast, Zn appeared to be immobile. It was also found that the microstructure of the solder had a significant effect on the electromigration behavior. For the solder with coarse Zn precipitates, more Sn extrusion sites were observed, and they were located not only at the anode side but also within the solder. Coarse Zn precipitates appeared to block Sn migration, thus Sn migration was intercepted in front of the Zn precipitates. The Sn atoms accumulated there, which led to its extrusion. The blocking effect was found to depend strongly on the size and orientation of the Zn precipitates.
Effects of the addition of Bi and Cu into the Sn-9Zn solder on its electromigration behavior were also investigated. The solders used are Sn-8Zn-3Bi and Sn-9Zn-1Cu. In the Sn-8Zn-3Bi solder, Bi migrated ahead of Sn along with the electron toward the anode side under current stressing. The Sn-9Zn-1Cu solder displays a microstructure different from that of the Sn-9Zn solder because Cu reacts with Zn to form the CuZn5 and Cu5Zn8 compounds in the solder. After current stressing, voids were formed in the solder matrix and mainly surrounded the Cu-Zn compounds.
其他識別: U0005-2107200815444600
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.