Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3698
標題: 以微球體包覆神經幹細胞對週邊神經修復的影響
Neural stem cells cultured in alginate microspheres for peripheral nerve system regeneration
作者: 何佑良
Ho, Yu-Liang
關鍵字: alginate;褐藻膠;microsphere;neural stem cell;chitosan;nano particle;neutrophic factor;control release;flat asymmetrical porous poly-lactide conduits;微球體;神經幹細胞;幾丁聚醣;奈米微粒;神經營養因子;釋放控制;聚乳酸導管
出版社: 化學工程學系所
引用: [1] Jen AC, Wake MC, Mikos AG. Hydrogels for cell immobilization. Macromolecules ; 50:357-364 (1996). [2] Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. J Cereb Blood Flow Metab ; 20(10):1393-1408 (2000). [3] Cao Q, Benton RL, Whittemore SR. Stem cell repair of central nervous system injury. J Neurosci Res ; 68(5):501-510 (2002). [4] Zhong Y, Bellamkonda RV. Biomaterials for the central nervous system. J R Soc Interface ; (2008). [5] Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials ; 27(16):3115-3124 (2006). [6] Richmon JD, Sage AB, Shelton E, Schumacher BL, Sah RL, Watson D. Effect of growth factors on cell proliferation, matrix deposition, and morphology of human nasal septal chondrocytes cultured in monolayer. Laryngoscope ; 115(9):1553-1560 (2005). [7] Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation ; 97(7):645-650 (1998). [8] Kitagawa H, Hayashi T, Mitsumoto Y, Koga N, Itoyama Y, Abe K. Reduction of ischemic brain injury by topical application of glial cell line-derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke ; 29(7):1417-1422 (1998). [9] Li L, Wu W, Lin LF, Lei M, Oppenheim RW, Houenou LJ. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc Natl Acad Sci U S A ; 92(21):9771-9775 (1995). [10] Kim BT, Rao VL, Sailor KA, Bowen KK, Dempsey RJ. Protective effects of glial cell line-derived neurotrophic factor on hippocampal neurons after traumatic brain injury in rats. J Neurosurg ; 95(4):674-679 (2001). [11] Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature ; 373(6512):335-339 (1995). [12] Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature ; 380(6571):252-255 (1996). [13] Sagot Y, Tan SA, Hammang JP, Aebischer P, Kato AC. GDNF slows loss of motoneurons but not axonal degeneration or premature death of pmn/pmn mice. J Neurosci ; 16(7):2335-2341 (1996). [14] Tada T, Ito J, Asai M, Yokoyama S. Fibroblast growth factor 1 is produced prior to apolipoprotein E in the astrocytes after cryo-injury of mouse brain. Neurochem Int ; 45(1):23-30 (2004). [15] Cuevas P, Carceller F, Reimers D, Saenz dT, I, Gimenez-Gallego G. Acidic fibroblast growth factor rescues gerbil hippocampal neurons from ischemic apoptotic death. Neurol Res ; 20(3):271-274 (1998). [16] Whalen GF, Shing Y, Folkman J. The fate of intravenously administered bFGF and the effect of heparin. Growth Factors ; 1(2):157-164 (1989). [17] Mazue G, Newman AJ, Scampini G, Della TP, Hard GC, Iatropoulos MJ et al. The histopathology of kidney changes in rats and monkeys following intravenous administration of massive doses of FCE 26184, human basic fibroblast growth factor. Toxicol Pathol ; 21(5):490-501 (1993). [18] Ueno S, Ito J, Nagayasu Y, Furukawa T, Yokoyama S. An acidic fibroblast growth factor-like factor secreted into the brain cell culture medium upregulates apoE synthesis, HDL secretion and cholesterol metabolism in rat astrocytes. Biochim Biophys Acta ; 1589(3):261-272 (2002). [19] Borghini I, Barja F, Pometta D, James RW. Characterization of subpopulations of lipoprotein particles isolated from human cerebrospinal fluid. Biochim Biophys Acta ; 1255(2):192-200 (1995). [20] Ito J, Zhang LY, Asai M, Yokoyama S. Differential generation of high-density lipoprotein by endogenous and exogenous apolipoproteins in cultured fetal rat astrocytes. J Neurochem ; 72(6):2362-2369 (1999). [21] Nakai M, Kawamata T, Taniguchi T, Maeda K, Tanaka C. Expression of apolipoprotein E mRNA in rat microglia. Neurosci Lett ; 211(1):41-44 (1996). [22] Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta ; 917(1):148-161 (1987). [23] Aoki K, Uchihara T, Sanjo N, Nakamura A, Ikeda K, Tsuchiya K et al. Increased expression of neuronal apolipoprotein E in human brain with cerebral infarction. Stroke ; 34(4):875-880 (2003). [24] Graham DI, Horsburgh K, Nicoll JA, Teasdale GM. Apolipoprotein E and the response of the brain to injury. Acta Neurochir Suppl ; 73:89-92 (1999). [25] Zhang LY, Ito JI, Kato T, Yokoyama S. Cholesterol homeostasis in rat astrocytoma cells GA-1. J Biochem ; 128(5):837-845 (2000). [26] Neary JT, Whittemore SR, Zhu Q, Norenberg MD. Synergistic activation of DNA synthesis in astrocytes by fibroblast growth factors and extracellular ATP. J Neurochem ; 63(2):490-494 (1994). [27] Scherer J, Schnitzer J. Growth factor effects on the proliferation of different retinal glial cells in vitro. Brain Res Dev Brain Res ; 80(1-2):209-221 (1994). [28] Shao N, Wang H, Zhou T, Xue Y, Liu C. Heparin potentiation of the effect of acidic fibroblast growth factor on astrocytes and neurons. Life Sci ; 54(12):785-789 (1994). [29] Thorns V, Licastro F, Masliah E. Locally reduced levels of acidic FGF lead to decreased expression of 28-kda calbindin and contribute to the selective vulnerability of the neurons in the entorhinal cortex in Alzheimer''s disease. Neuropathology ; 21(3):203-211 (2001). [30] Myers RL, Chedid M, Tronick SR, Chiu IM. Different fibroblast growth factor 1 (FGF-1) transcripts in neural tissues, glioblastomas and kidney carcinoma cell lines. Oncogene ; 11(4):785-789 (1995). [31] Wilkie AO, Morriss-Kay GM, Jones EY, Heath JK. Functions of fibroblast growth factors and their receptors. Curr Biol ; 5(5):500-507 (1995). [32] Zhu X, Sasse J, McAllister D, Lough J. Evidence that fibroblast growth factors 1 and 4 participate in regulation of cardiogenesis. Dev Dyn ; 207(4):429-438 (1996). [33] Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation ; 97(7):645-650 (1998). [34] Cuevas P, Carceller F, Lozano RM, Crespo A, Zazo M, Gimenez-Gallego G. Protection of rat myocardium by mitogenic and non-mitogenic fibroblast growth factor during post-ischemic reperfusion. Growth Factors ; 15(1):29-40 (1997). [35] de VP, Faas MM, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials ; 27(32):5603-5617 (2006). [36] Yasuhara T, Borlongan CV, Date I. Ex vivo gene therapy: transplantation of neurotrophic factor-secreting cells for cerebral ischemia. Front Biosci ; 11:760-775 (2006). [37] Gunzburg WH, Salmons B. Use of cell therapy as a means of targeting chemotherapy to inoperable pancreatic cancer. Acta Biochim Pol ; 52(3):601-607 (2005). [38] Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol ; 23(1):47-55 (2005). [39] Hubbell JA. Hydrogel systems for barriers and local drug delivery in the control of wound healing. 39, 305-313. 1996. J Control Release. Ref Type: Generic [40] R.Lanza, R.Langer, J.P.Vacanti. ''Principles of Tissue Engineering'', 2nd edition, Academic Press. New York: 2000. [41] A.Martinsen, G.Skjak-Braek, O.Smidsrod. Alginate as immobilization material. I. Correlation between chemical and physical properties of alginate gel breads. Biotechnology and Bioengineering ; 33:79-89 (1989). [42] A.Martinsen. Alginate as immobilization material Ⅲ.Diffusional Properties. Biotechnology and Bioengineering ; 39:186-194 (1992). [43] Amsden B., N.Turner. Diffusion characteristics of calcium alginate gels. Biotechnology and Bioengineering ; 65:605-610 (1999). [44] Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials ; 18(8):583-590 (1997). [45] Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials ; 18(8):583-590 (1997). [46] Atala A, Koh C. Applications of tissue engineering in the genitourinary tract. Expert Rev Med Devices ; 2(1):119-126 (2005). [47] Beris AE, Lykissas MG, Papageorgiou CD, Georgoulis AD. Advances in articular cartilage repair. Injury ; 36 Suppl 4:S14-S23 (2005). [48] Guo JF, Jourdian GW, MacCallum DK. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res ; 19(2-4):277-297 (1989). [49] Smidsrod O, Skjak-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol ; 8(3):71-78 (1990). [50] Paige KT, Cima LG, Yaremchuk MJ, Schloo BL, Vacanti JP, Vacanti CA. De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast Reconstr Surg ; 97(1):168-178 (1996). [51] Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet ; 343(8903):950-951 (1994). [52] Fritschy WM, Wolters GH, van SR. Effect of alginate-polylysine-alginate microencapsulation on in vitro insulin release from rat pancreatic islets. Diabetes ; 40(1):37-43 (1991). [53] King A, Sandler S, Andersson A, Hellerstrom C, Kulseng B, Skjak-Braek G. Glucose metabolism in vitro of cultured and transplanted mouse pancreatic islets microencapsulated by means of a high-voltage electrostatic field. Diabetes Care ; 22 Suppl 2:B121-B126 (1999). [54] de Haan BJ, Faas MM, de VP. Factors influencing insulin secretion from encapsulated islets. Cell Transplant ; 12(6):617-625 (2003). [55] Klock G, Pfeffermann A, Ryser C, Grohn P, Kuttler B, Hahn HJ et al. Biocompatibility of mannuronic acid-rich alginates. Biomaterials ; 18(10):707-713 (1997). [56] Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science ; 210(4472):908-910 (1980). [57] Soon-Shiong P, Feldman E, Nelson R, Heintz R, Merideth N, Sandford P et al. Long-term reversal of diabetes in the large animal model by encapsulated islet transplantation. Transplant Proc ; 24(6):2946-2947 (1992). [58] De VP, De Haan BJ, Wolters GH, Strubbe JH, Van SR. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia ; 40(3):262-270 (1997). [59] Omer A, Duvivier-Kali VF, Trivedi N, Wilmot K, Bonner-Weir S, Weir GC. Survival and maturation of microencapsulated porcine neonatal pancreatic cell clusters transplanted into immunocompetent diabetic mice. Diabetes ; 52(1):69-75 (2003). [60] Zimmermann H, Zimmermann D, Reuss R, Feilen PJ, Manz B, Katsen A et al. Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med ; 16(6):491-501 (2005). [61] Chang TM. Pharmaceutical and therapeutic applications of artificial cells including microencapsulation. Eur J Pharm Biopharm ; 45(1):3-8 (1998). [62] Joly A, Desjardins JF, Fremond B, Desille M, Campion JP, Malledant Y et al. Survival, proliferation, and functions of porcine hepatocytes encapsulated in coated alginate beads: a step toward a reliable bioartificial liver. Transplantation ; 63(6):795-803 (1997). [63] Haque T, Chen H, Ouyang W, Martoni C, Lawuyi B, Urbanska AM et al. In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett ; 27(5):317-322 (2005). [64] Ringel M, von Mach MA, Santos R, Feilen PJ, Brulport M, Hermes M et al. Hepatocytes cultured in alginate microspheres: an optimized technique to study enzyme induction. Toxicology ; 206(1):153-167 (2005). [65] Mai G, Huy NT, Morel P, Mei J, Bosco D, Berney T et al. Treatment of fulminant liver failure by transplantation of microencapsulated primary or immortalized xenogeneic hepatocytes. Transplant Proc ; 37(1):527-529 (2005). [66] Chubinskaya S, Huch K, Schulze M, Otten L, Aydelotte MB, Cole AA. Gene expression by human articular chondrocytes cultured in alginate beads. J Histochem Cytochem ; 49(10):1211-1220 (2001). [67] Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory''s experience. Acc Chem Res ; 33(2):94-101 (2000). [68] Langer R. Drug delivery and targeting. Nature ; 392(6679 Suppl):5-10 (1998). [69] Gombotz WR, Pettit DK. Biodegradable polymers for protein and peptide drug delivery. Bioconjug Chem ; 6(4):332-351 (1995). [70] Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci ; 6(8):623-633 (2006). [71] Lee KY, Ha WS, Park WH. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials ; 16(16):1211-1216 (1995). [72] Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials ; 22(3):261-268 (2001). [73] Kratz G, Arnander C, Swedenborg J, Back M, Falk C, Gouda I et al. Heparin-chitosan complexes stimulate wound healing in human skin. Scand J Plast Reconstr Surg Hand Surg ; 31(2):119-123 (1997). [74] Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials ; 22(2):165-173 (2001). [75] Miyazaki S, Ishii K, Nadai T. The use of chitin and chitosan as drug carriers. Chem Pharm Bull (Tokyo) ; 29(10):3067-3069 (1981). [76] Aiedeh K, Gianasi E, Orienti I, Zecchi V. Chitosan microcapsules as controlled release systems for insulin. J Microencapsul ; 14(5):567-576 (1997). [77] Giunchedi P, Genta I, Conti B, Muzzarelli RA, Conte U. Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheres. Biomaterials ; 19(1-3):157-161 (1998). [78] Muzzarelli R, Biagini G, Pugnaloni A, Filippini O, Baldassarre V, Castaldini C et al. Reconstruction of parodontal tissue with chitosan. Biomaterials ; 10(9):598-603 (1989). [79] Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials ; 20(12):1133-1142 (1999). [80] An HS, Thonar EJ, Masuda K. Biological repair of intervertebral disc. Spine ; 28(15 Suppl):S86-S92 (2003). [81] Sobajima S, Kim JS, Gilbertson LG, Kang JD. Gene therapy for degenerative disc disease. Gene Ther ; 11(4):390-401 (2004). [82] Dang JM, Sun DD, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW. Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials ; 27(3):406-418 (2006). [83] Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev ; 54(1):135-147 (2002). [84] Kayser O, Lemke A, Hernandez-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol ; 6(1):3-5 (2005). [85] Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov ; 3(9):785-796 (2004). [86] Weber RA, Breidenbach WC, Brown RE, Jabaley ME, Mass DP. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg ; 106(5):1036-1045 (2000). [87] Meek MF, Dijkstra JR, Den Dunnen WF, Ijkema-Paassen J, Schakenraad JM, Gramsbergen A et al. Functional assessment of sciatic nerve reconstruction: biodegradable poly (DLLA-epsilon-CL) nerve guides versus autologous nerve grafts. Microsurgery ; 19(8):381-388 (1999). [88] Doolabh VB, Hertl MC, Mackinnon SE. The role of conduits in nerve repair: a review. Rev Neurosci ; 7(1):47-84 (1996). [89] Maeda T, Mackinnon SE, Best TJ, Evans PJ, Hunter DA, Midha RT. Regeneration across ''stepping-stone'' nerve grafts. Brain Res ; 618(2):196-202 (1993). [90] Chang CJ, Hsu SH. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Biomaterials ; 27(7):1035-1042 (2006). [91] Chang CJ, Hsu SH, Yen HJ, Chang H, Hsu SK. Effects of unidirectional permeability in asymmetric poly(DL-lactic acid-co-glycolic acid) conduits on peripheral nerve regeneration: an in vitro and in vivo study. J Biomed Mater Res B Appl Biomater ; 83(1):206-215 (2007). [92] Jain A, Kim YT, McKeon RJ, Bellamkonda RV. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials ; 27(3):497-504 (2006). [93] Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials ; 27(19):3560-3569 (2006). [94] Nisbet DR, Crompton KE, Horne MK, Finkelstein DI, Forsythe JS. Neural tissue engineering of the CNS using hydrogels-A review. J Biomed Mater Res B Appl Biomater ; (2007). [95] Mosahebi A, Simon M, Wiberg M, Terenghi G. A novel use of alginate hydrogel as Schwann cell matrix. Tissue Eng ; 7(5):525-534 (2001). [96] Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO, Novikov LN. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res A ; 77(2):242-252 (2006). [97] Freier T, Montenegro R, Shan KH, Shoichet MS. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials ; 26(22):4624-4632 (2005). [98] Suzuki Y, Kitaura M, Wu S, Kataoka K, Suzuki K, Endo K et al. Electrophysiological and horseradish peroxidase-tracing studies of nerve regeneration through alginate-filled gap in adult rat spinal cord. Neurosci Lett ; 318(3):121-124 (2002). [99] Halle JP, Landry D, Fournier A, Beaudry M, Leblond FA. Method for the quantification of alginate in microcapsules. Cell Transplant ; 2(5):429-436 (1993). [100] Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg ; 83(1):129-138 (1989). [101] Matsumoto S, Kobayashi H, Takashima Y. Production of monodispersed capsules. J Microencapsul ; 3(1):25-31 (1986). [102] Bowersock TL, HogenEsch H, Suckow M, Guimond P, Martin S, Borie D et al. Oral vaccination of animals with antigens encapsulated in alginate microspheres. Vaccine ; 17(13-14):1804-1811 (1999). [103] De VP, De HB, Pater J, Van SR. Association between capsule diameter, adequacy of encapsulation, and survival of microencapsulated rat islet allografts. Transplantation ; 62(7):893-899 (1996). [104] Robitaille R, Pariseau JF, Leblond FA, Lamoureux M, Lepage Y, Halle JP. Studies on small (<350 microm) alginate-poly-L-lysine microcapsules. III. Biocompatibility Of smaller versus standard microcapsules. J Biomed Mater Res ; 44(1):116-120 (1999). [105] Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A et al. Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials ; 26(16):3327-3331 (2005). [106] Serp D, Cantana E, Heinzen C, Von SU, Marison IW. Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng ; 70(1):41-53 (2000). [107] Schwinger C, Koch S, Jahnz U, Wittlich P, Rainov NG, Kressler J. High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. J Microencapsul ; 19(3):273-280 (2002). [108] Sugiura S, Oda T, Aoyagi Y, Matsuo R, Enomoto T, Matsumoto K et al. Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules. Biomed Microdevices ; 9(1):91-99 (2007). [109] Anthony Atala, Chester Koh. Applications of tissue engineering in the genitourinary tract. Expert Review of Medical Devices ; 2(1):119-126 (2005). [110] Li X, Liu T, Song K, Yao L, Ge D, Bao C et al. Culture of neural stem cells in calcium alginate beads. Biotechnol Prog ; 22(6):1683-1689 (2006). [111] Halle JP, Leblond FA, Pariseau JF, Jutras P, Brabant MJ, Lepage Y. Studies on small (< 300 microns) microcapsules: II--Parameters governing the production of alginate beads by high voltage electrostatic pulses. Cell Transplant ; 3(5):365-372 (1994). [112] Zhen-Xing Tang, Lu-E Shi, Jun-Qing Qian. Neutral lipase from aqueous solutions on chitosan nano-particles. Biochemical Engineering Journal ; 34:217-223 (2007). [113] Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm ; 295(1-2):235-245 (2005). [114] P.CALVO, C.REMUNAN-LOPEZ, J.L.VILA-JATO, M.J.ALONSO. Novel Hydrophilic Chitosan - Polyethylene Oxide Nanoparticles as Protein Carriers. JournalofAppliedPolymerScience ; 63:125-132 (1997). [115] Midha R, Munro CA, Dalton PD, Tator CH, Shoichet MS. Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg ; 99(3):555-565 (2003). [116] Midha R, Shoichet MS, Dalton PD, Cao X, Munro CA, Noble J et al. Tissue engineered alternatives to nerve transplantation for repair of peripheral nervous system injuries. Transplant Proc ; 33(1-2):612-615 (2001). [117] Kataoka K, Suzuki Y, Kitada M, Hashimoto T, Chou H, Bai H, Ohta M, Wu S, Suzuki K, Ide C. Alginate Enhances Elongation of Early Regenerating Axons in Spinal Cord of Young Rats Tissue Eng. ; 10(3/4):493-504 (2004).. [118] Chun-Jung Chen, Yen-Chuan Ou, Su-Lan Liao, Wen-Ying Chen, Shih-Yun Chen, Ching-Wen Wu, Chun-Chiang Wang, Wen-Yi Wang, Yong-San Huang, Shan-Hui Hsu. Transplantation of bone marrow stromal cells for peripheral nerve repair. Experimental Neurology 204: 443-453 (2007).
摘要: 
本研究是以生物可降解材料-褐藻膠做為基材,以噴霧法製作成微球體,並於製程中包覆神經幹細胞,討論神經幹細胞在微球體內部的生長與分化,並分析其基因表現。微球體經過三天的培養後,在微球體中的神經幹細胞增生倍率可達四倍;而在生化功能部分,神經生長因子等的基因表現,與培養於平面時的表現相近,代表微球體對此細胞的生化功能無顯著影響,因此評估微球體對於細胞無生化功能上的影響且可以讓細胞增殖。另對於神經營養因子的釋放,以生物可降解材料-幾丁聚醣、褐藻膠及氫化丁基幾丁聚醣,運用乳化製程將幾丁聚醣製作成奈米微粒,並探討溫度對於蛋白質的吸附以及釋放的影響,結果顯示在25℃的環境下有較高的蛋白吸附率,而在釋放的部份,經過兩天後約有40%的蛋白釋放出來並且達到穩定。在體內實驗的部份,以步跡及組織型態學觀察其修復情形。從功能性分析與再生神經組織的結果推論,含有微球體的神經導管對於大鼠在步跡測試較其他二組有顯著改善,其次是神經幹細胞組。因此以微球體包覆神經幹細胞後,結合非對稱孔洞聚乳酸神經導管,有較好的修復效果。

The biodegradable material-alginate had been fabricated into microspheres by spray process. Neural stem cells had been encapsulated in the microspheres avoiding the immune response. At the same time, the cell feature including proliferation, gene expression and differentiation had been observed. The cells cultured in microspheres for 3 days, and then the cell density had been increased 4 times to the original density. Based on the same gene expression of BDNF, NGF and GDNF between microspheres cultured cells and TCPS cultured cells. Suggested microspheres don't affect cell biofunctions. Furthermore, the emulsion process had made the nanoparticles by crosslinking reaction between chitosan, alginate and hydroxybutyl chitosan for releasing the neurotrophic factor. To make sure the temperature effect to protein release, the results showed that higher protein adsorbability at 25℃; after 48 hours, 40% protein had released and reach stable releasing rate at 37℃. In the sciatic nerve repair animal model, evaluate the regeneration by walking track analysis and histology. From the above results, the performing filled with microspheres is better than filled with neural stem cells and nerve conduit only. The conclusion is that neural stem cells encapsulated microspheres present the better repair effects in the above animal model.
URI: http://hdl.handle.net/11455/3698
其他識別: U0005-2108200823460800
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.