Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/36987
標題: | 疊氮化鈉誘變菜豆之α-amylase inhibitor 1純化與其活性之探討 Purification and activity of α-amylase inhibitor 1 from NaN3-induced common bean mutants |
作者: | 王晞華 Wang, Hsi-Hua |
關鍵字: | common bean;菜豆;α-amylase inhibitor;NaN3 mutation;protein purification;α-澱粉分解沒抑制物;疊氮化鈉誘變;蛋白質純化 | 出版社: | 農藝學系所 | 引用: | 胡懋麟。1994。菜豆。出自”雜糧作物各論”,蔡文福主編,pp. 1269-1281。台北:財團法人台灣區雜糧發展基金會。 葉茂生。2009。食用作物學。國立中興大學農藝學系。台中。 Abe, J. I., U. Sidenius, and B. Svensson. 1993. Arginine is essential for the α-amylase inhibitory activity of the α-amylase/subtilisin inhibitor (BASI) from barley seeds. Biochem. J. 293: 151-155. Acosta-Gallegos, J. A., J. D. Kelly,.and P. Gepts. 2007. Prebreeding in common bean and use of genetic diversity from wild Germplasm. Crop Sci. 47: S-44-S-59. Aubry, C., M. C. Morere-Le Paven, A. L. Chateigner-Boutin, B. Teulat-Merah, C. Ricoult, D. Peltier, R. Jalouzot, and A. M. Limami. 2003. A gene encoding a germin-like protein, identified by a cDNA-AFLP approach, is specifically expressed during germination of Phaseolus vulgaris. Planta 217: 466-475. Bloch Jr, C., and M. Richardson. 1991. A new family of small (5 kD) protein inhibitors of insect α-amylase from seeds of sorghum (Sorghum bicolor (L.) Moench) have sequence homologies with wheat δ-purothionins. FEBS Lett. 279: 101-104. Boivin, M., A. R. Zinsmeister, V. L. Go, and E. P. DiMagno. 1987. Effect of a purified amylase inhibitor on carbohydrate metabolism after a mixed meal in healthy humans. Mayo Clin. Proc. 62: 249-255. Bowman, D. E. 1945. Amylase inhibitor of navy bean. Science 102: 358-359. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. Brugge, W. R., and M. S. Rosenfeld. 1987. Impairment of starch absorption by a potent amylase inhibitor. Am. J. Gastroenterol. 82: 718-722. Carlson, G. L., B. U. Li, P. Bass, and W. A. Olsen. 1983. A bean alpha-amylase inhibitor formulation (starch blocker) is ineffective in man. Science 219: 393-395. Chagas, E. P., and L. G. Santoro. 1997. Globulin and albumin proteins in dehulled seeds of three Phaseolus vulgaris cultivars. Plant Foods Hum. Nutr. 51: 17-26. Chokshi, D. 2007. Subchronic oral toxicity of a standardized white kidney bean (Phaseolus vulgaris) extract in rats. Food Chem. Toxicol. 45: 32-40. Chrispeels, M. J., and N. V. Raikhel. 1991. Lectins, lectin genes, and their role in plant defense. Plant Cell 3: 1-9. Dennison, C., and R. Lovrient. 1997. Three phase partitioning: concentration and purification of protein. Protein Exp. Purif. 11: 149-161. Doyle, J. J., and J. L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Feng, G. H., M. Richardson, M. S. Chen, K. J. Kramer, T. D. Morgan, and G. R. Reeck. 1996. α-Amylase inhibitors from wheat: a sequences and patterns of inhibition of insect an human α-amylases. Insect Biochem. Mol. Biol. 26: 419-426. Finardi-Filho, F., T. E. Mirkov, and M. J. Chrispeels. 1996. A putative precursor protein in the evolution of the bean α-amylase inhibitor. Phytochemistry 43: 57-62. Franco, O. L., D. J. Rigden, F. R. Melo, C. Bloch Jr, C. P. Silva, and M. F. Grossi de Sa. 2000. Activity of wheat α-amylase inhibitors towards bruchid α-amylases and structural explanation of observed specifcities. Eur. J. Biochem. 267: 1466-1473. Franco, O. L., D. J. Rigden, F. R. Melo, and M. F. Grossi de Sa. 2002. Plant α-amylase inhibitors and their interaction with insect α-amylases: structure, function and potential for crop protection. Eur. J. Biochem. 269: 397-412. Frels, J. M., and J. H. Rupnow. 1984. Purification and partial characterization of two α-amylase lnhibitors from black bean (Phaseolus vulgaris). J. Food Biochem. 8: 281-301. Garcia-Casado, G. L., R. Sanchez-Monge, C. Lopez-Otin, and G. Salcedo. 1994. Rye inhibitors of animal α-amylases shown different specificities, aggregative properties and IgE-binding capacities than their homologues from wheat and barley. Eur. J. Biochem. 224: 525-531. Gepts, P. 1990. Biochemical evidence bearing on the domestication of Phaseolus (Fabaceae) beans. Econ. Bot. 44: 28-38. Giri, A. P., and M. V. Kachole. 1998. Amylase inhibitors of pigeonpea (Cajanus cajan) seeds. Phytochemistry 47: 197-202. Grant, G., L. J. More, N. H. McKenzie, J. C. Stewart, and A. Pusztai. 1983. A survey of the nutritional and haemagglutination properties of legume seeds generally available in the UK. Br. J. Nutr. 50: 207-214. Grossi de Sa, M. F., T. E. Mirkov, M. Ishimoto, G. Colucci, K. S. Bateman, and M. J. Chrispeels. 1997. Molecular characterization of a bean α-amylase inhibitor that inhibits the α-amylase of the Mexican bean weevil Zabrotes subfasciatus. Planta 203: 295-303. Hartweck, L. M., and T. C. Osborn. 1997. Altering protein composition by genetically removing phaseolin from common bean seeds containing arcelin or phytohemagglutinin. Theor. Appl. Genet. 95: 1012-1017. Hochstrasser, D. F., A. Patchornik, and C. R. Merril. 1988. Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining. Anal. Biochem. 173: 412-423. Ignacimuthu, S., and S. Prakash. 2006. Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J. Biosci. 31: 339-345. Iguti, A. M., and F. M. Lajolo. 1991. Occurrence and purification of α-amylase isoinhibitors in bean (Phaseolus vulgaris L.) varieties. J. Agric. Food Chem. 39: 2131-2136. Ishimoto, M., and K. Kitamura. 1989. Growth inhibitory effects of an α-amylase inhibitor from kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Appl. Ent. Zool. 24: 281-286. Ishimoto, M., and M. J. Chrispeels. 1996. Protective mechanism of the Mexican bean weevil against high levels of α-amylase inhibitor in the common bean. Plant Physiol. 111: 393-401. Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44: 223-270. Jain, N. K., M. Boivin, A. R. Zinsmeister, and E. P. DiMagno. 1991. The ileum and carbohydrate-mediated feedback regulation of postprandial pancreaticobiliary secretion in normal humans. Pancreas 6: 495-505. Jain, N. K., M. Boivin, A. R. Zinsmeister, M. L. Brown, J. R. Malagelada, and E. P. DiMagno. 1989. Effect of ileal perfusion of carbohydrates and amylase inhibitor on gastrointestinal hormones and emptying. Gastroenterology 96: 377-387. Jeng, T. L., Y. J. Shih, C. C. Lai, M. T. Wu, and J. M. Sung. 2010. Anti-oxidative characterization of NaN3-induced common bean mutants. Food Chem. 119: 1006-1011. Johnson, W. C., C. Menendez, R. O. Nodari, E. M. K. Koinange, S. Magnusson, S. P. Singh, and P. Gepts. 1996. Association of a seed weight factor with the phaseolin seed storage protein locus across genotypes, environments, and genomes in Phaseolus–Vigna spp.: Sax (1923) revisited. Available at http://www.plantsciences.ucdavis.edu/gepts/Sax.htm (verified 11 Mar. 2007). J. Agric. Genomics 2. Kami, A., V. Poncet, V. Geffroy, and P. Gepts. 2006. Development of four phylogenetically-arrayed BAC libraries and sequence of the APA locus in Phaseolus vulgaris. Theor. Appl. Genet. 112: 987-998. Kilpatrick, D. C., C. Green, and P. L. Yap. 1983. Lectin content of slimming pills. Br. Med. J. (Clin. Res. Ed.) 286: 305. Kotaru, M., K. Saito, H. Yoshikawa, T. Ikeuchi, and F. Ibuki. 1987. Purification and some properties of an α-amylase inhibitor from cranberry bean (Phaseolus vulgaris). Agric. Biol. Chem. 51: 577-578. Koukiekolo, R., V. L. Berre-Anton, V. Desseaux, Y. Moreau, P. Rouge, G. Marchis-Mouren, and M. Santimone. 1999. Mechanism of porcine pancreatic α-amylase inhibition of amylose and maltopentaose hydrolysis by kidney bean (Phaseolus vulgaris) inhibitor and comparison with that by acarbose. Eur. J. Biochem. 265: 20-26. Kumar, V., S. Sharma, S. Kero, S. Sharma, A. K. Sharma, M. Kumar, and K. V. Bhat. 2008. Assessment of genetic diversity in common bean (Phaseolus vulgaris L.) germplasm using amplified fragment length polymorphism (AFLP). Sci. Hortic. 116: 138-143. Lajolo, F. M., and F. Finardi Filho. 1985. Partial characterization of the amylase inhibitor of black beans (Phaseolus vulgaris), variety Rico 23. J. Agric. Food Chem. 33: 132-138. Layer, P., A. R. Zinsmeister, and E. P. DiMagno. 1986. Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 91: 41-48. Layer, P., G. L. Carlson, and E. P. DiMagno. 1985. Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans. Gastroenterology 88: 1895-1902. Le Berre-Anton, V., C. Bompard-Gilles, F. Payan, and P. RougeA, 1997. Characterization and functional properties of the α-amylase inhibitor (α-AI) from kidney bean (Phaseolus vulgaris) seeds. Biochim. Biophys. Acta 1343: 31-40. Lee, S. C., and J. R. Whitaker. 2000. The molecular weight of α-amylase inhibitor from white bean cv 858B (Phaseolus vulgaris L.) is 56 kDa, not 20 kDa. J. Food Biochem. 8: 189-213. Lioi, L., A. R. Piergiovanni, D. Pignone, S. Puglisi, M. Santantonio, and G. Sonnante. 2005. Genetic diversity of some surviving on-farm Italian common bean (Phaseolus vulgaris L.) landraces. Plant Breed. 124: 576-581. Lovrein, R. E., C. Goldensoph, P. Anderson, and B. Odegard. 1987. Three phase partitioning (TPP) via t-butanol: enzyme separation from crudes. In Protein purification micro to macro, ed. R. Burgess. pp. 521-553. New York: Marcel Dekker. Maciel, F. L., S. Echeverrigaray, L. T. S. Gerald, and F. Gobbi-Grazziotin. 2003. Genetic relationships and diversity among Brazilian cultivars and landraces of common beans (Phaseolus vulgaris L.) revealed by AFLP markers. Gen. Res. Crop Evol. 50: 887-893. Marshall, J. J., and C. M. Lauda. 1975. Purification and properties of phaseolamin, an inhibitor of α-amylase, from the kidney bean, Phaseohs vulgaris. J. Biol. Chem. 250: 8030-8037. Melo, F. R., M. P. Sales, L. S. Silva, O. L. Franco, C. Bloch Jr, and M. B. Ary. 1999. α-Amylase from cowpea seeds. Prot. Pept. Lett. 6: 387-392. Menezes, E. W., and F. M. Lajolo. 1987. Inhibition of starch digestion by a black bean alpha-amylase inhibitor, in normal and diabetic rats. Nutr. Rep. Int. 36: 1185-1195. Moreno, J., and M. J. Chrispeels. 1989. A lectin gene encodes the α-amylase inhibitor of the common bean. Proc. Natl. Acad. Sci. USA. 86: 7885-7889. Moreno, J., T. Altabella, and M. J. Chrispeels. 1990. Characterization of alpha-amylase inhibitor, a lectin like protein in the seeds of Phaseolus vulgaris. Plant Physiol. 92: 703-709. Myburg, A. A., D. L. Remington, D. M. O’Malley, R. R. Sederoff, and R. W. Whetten. 2001. High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotechniques 30: 348-357. Nakaguchi, T., T. Arakawa, J. S. Philo, J. Wen, M. Ishimoto, and H. Yamaguchi. 1997. Structural characterization of an α-amylase inhibitor from a wild common bean (Phaseolus vulgaris): Insight into the common structural features of leguminous α-amylase inhibitors. J. Biochem. 121: 350-354. Nishizawa, K., M. Teraishi, S. Utsumi, and M. Ishimoto. 2007. Assessment of the importance of α-amylase inhibitor-2 in bruchid resistance of wild common bean. Theor. Appl. Genet. 114: 755-764. Nowosielski, J., W. Podyma, and D. Nowosielska. 2002. Molecular research on the genetic diversity of Polish varieties and landraces of Phaseolus coccineus L. and Phaseolus vulgaris L. using the RAPD and AFLP methods. Cell. Mol. Biol. Lett. 7: 753-762. Obiro, W. C., T. Zhang, and B. Jiang. 2008. The nutraceutical role of the Phaseolus vulgaris α-amylase inhibitor. Br. J. Nutr. 100: 1-12. Osborn, T. C., D. C. Alexander, S. S. M. Sun, C. Cardona, and F. A. Bliss. 1988a. Insecticidal activity and lectin homology of arcelin seed protein. Science 240: 207-210. Osborn, T. C., M. Burow, and F. A. Bliss. 1988b. Purification and characterization of arcelin seed protein from common bean. Plant Physiol. 86: 399-405. Papa, R., J. Acosta, A. Delgado-Salinas, and P. Gepts. 2005. A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor. Appl. Genet. 111: 1147-1158. Paule, B. J. A., R. Meyer, L. F. Moura-Costa, R. C. Bahia, R. Carminati, L. F. Regis, V. L. C. Vale, S. M. Freire, I. Nascimento, R. Schaer, and V. Azevedo. 2004. Three-phase partitioning as an efficient method for extraction/concentration of immunoreactive excreted-secreted proteins of Corynebacterium pseudotuberculosis. Prot. Exp. Purif. 34: 311-316. Peumans, W. J., and E. J. V. Damme. 1995. Lectins as plant defense proteins. Plant Physiol. 109: 347-352. Powers, J. R., and J. R. Whitaker. 1977. Effect of several experimental parameters on combination of red kidney bean (Phaseolus vulgaris) α-amylase inhibitor with porcine pancreatic α-amylase. J. Food Biochem. 1: 239-260. Pueyo, J. J., D. C. Hunt, and M. J. Chrispeels. 1993. Activation of bean (Phaseolus vulgaris) α-amylase inhibitor requires proteolytic processing of the proprotein. Plant Physiol. 101: 1341-1348. Richardson, M. 1991. Seed storage proteins: the enzyme inhibitors. In Methods in Plant Biochemistry v5, ed. L. Rogers, pp. 261-307. London: Academic Press. Roldan-Ruiz, I., J. Dendauw, E. Van Bockstaele, A. Depicker, and M. De Loose. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed. 6: 125-134. Rosales-Serna, R., S. Hernandez-Delgado, M. Gonzalez-Paz, J. A. Acosta-Gallegos, and N. Mayek-Perez. 2005. Genetic relationships and diversity revealed by AFLP markers in Mexican common bean bred cultivars. Crop Sci. 45: 1951-1957. Sanchez-Monge, R., L. Gomez, F. Garcia-Olmedo, and G. Salcedo. 1989. New dimeric inhibitor of heterologous α-amylases encoded by a duplicated gene in the short arm of chromosome 3B of wheat (Triticum aestivum L.). Eur. J. Biochem. 183: 37-40. Santimone, M., R. Koukiekolo, Y. Moreau, V. L. Berre, P. Rouge, G. Marchis-Mouren, and V. Desseaux. 2004. Porcine pancreatic α-amylase inhibition by the kidney (Phaseolus vulgaris) inhibitor (α-AI1) and structural changes in the α-amylase inhibitor complex. Biochim. Biophys. Acta 1696: 181-190. Saxena, L., B. K. Iyer, and L. Ananthanarayan. 2007. Three phase partitioning as a novel method for purification of ragi (Eleusine coracana) bifunctional amylase/protease inhibitor. Process Biochem. 44: 491-495. Schroeder, H. E., S. Gollasch, A. Moore, L. M. Tabe, S. Craig, D. C. Hardie, M. J. Chrispeels, D. Spencer and T. J. V. Higgins. 1995. Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol. 107: 1233-1239. Sharma, A., and M. N. Gupta. 2001. Three phase partitioning as a large scale separation method for purification of wheat germ bifunctional protease/amylase inhibitor. Process Biochem. 37: 193-196. Solleti, S. K., S. Bakshi, J. Purkayastha, S. K. Panda, and L. Sahoo. 2008. Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests bruchid beetles. Plant Cell Rep. 27: 1841-1850. Szamos, J., and E. Kiss. 1995. Three-phase partitioning of crude protein extracts. J. Colloid Interf. Sci. 170: 290-292. Udani, J., M. Hardy, and D. C. Madsen. 2004. Blocking carbohydrate absorption and weight loss: a clinical trial using Phase 2 brand proprietary fractionated white bean extract. Altern. Med. Rev. 9: 63-69. Valencia, A., A. E. Bustillo, G. E. Ossa, and M. J. Chrispeels. 2000. α-Amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochem. Mol. Biol. 30: 207-213. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, and M. Kuiper. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 21: 4407-4414. Wati, R. K., T. Theppakorn, S. Benjakul, and S. Rawdkuen. 2009. Three-phase partitioning of trypsin inhibitor from legume seeds. Process Biochem. 44: 1307-1314. Werner, G. J., and C. L. V. Lette. 1968. Heat-labile growth-inhibiting factors in beans (Phaseolus vulgaris). J. Nutr. 94: 203-210. Yamada, T., R. Moriyama, K. Hattori, and M. Ishimoto. 2005. Isolation of two α-amylase inhibitor genes of tepary bean (Phaseolus acutifolius A. Gray) and their functional characterization in genetically engineered azuki bean. Plant Sci. 169: 502-511. Yamagata, H., K. Kunimatsu, H. Kamasaka, T. Kuramoto, and T. Iwasaki, 1998. Rice bifunctional α-amylase/subtilisin inhibitor: characterization, localization, and changes in developing and germinating seeds. Biosc. Biotechnol. Biochem. 62: 978-985. | 摘要: | 菜豆(Phaseolus vulgaris L.)種子內含有澱粉分解酶抑制物 (α-amylase inhibitor 1, α-AI1),能與豬胰臟型澱粉分解酶、人胰臟型澱粉分解酶結合,從而抑制澱粉分解,因此α-AI1可用於改善二型糖尿病的惡化或肥胖症的發生。本研究利用三相分離法(three-phase partitioning, TPP),首先將菜豆粗萃取液pH值調整至5.25後,加入30%飽和硫酸銨以沈澱蛋白,再以1:1 (v/v) 加入第三級丁醇(t-butanol)產生三相,於水層得到純化之α-AI1,其中引種之白腎豆(PI-40)與台灣花豆花莢種(Hwachia),經TPP步驟後可得純化倍數(purification fold)分別為7.6與18倍,而α-AI1總活性仍能維持80與66%。本研究接著以擴增片段長度多型性(amplified fragment length polymorphism, AFLP)分析34個NaN3之菜豆誘變品系,求得各品系間之遺傳變異程度,從中挑選9個菜豆誘變品系與引種之菜豆以TPP系統進行α-AI1之純化,並檢測α-AI1之活性。結果發現菜豆誘變品系SA-05之α-AI1對α-amylase具有較高的抑制活性,可供未來商業化生產α-AI1之參考。 Common bean (Phaseolus vulgaris L.) contain α-amylase inhibitor 1 (α-AI1), which would bind α-amylase and subsequently reduce starch digestion. Thus, α-AI1 can be used to control the deterioration of type II diabetes and obesity. In this study, a three-phase partitioning (TPP) technique was used to extract and purify α-AI1 from common bean. The crud extracts were adjusted to pH 5.25, and 30% ammonium sulfate was added. Then the tert-butanol was added to the mixing solution for obtaining three phases. The results indicated that the α-AI1 proteins were mainly recovered in the aqueous phase. The purified α-AI1 for varieties PI-40 and Hwachia were 7.6 fold and 18 fold, respectively. The recovery of total activity was 81 % and 66 %, respectively, for PI-40 and Hwachia. AFLP (amplified fragment length polymorphism) was subsequently used to assess genetic diversity among Hwachia and it 34 NaN3-induced mutants. Nine NaN3-induced mutants and Hwachia and 2 introduced varieties used for α-AI1 purification by using TPP and then the α-AI1 inhibitor activity was determined. The results showed that the mutant SA-05 had higher inhibitor activity than other NaN3-induced mutants and Hwachia. Thus, mutant SA-05 may be useful in commercial preparation of α-AI1. |
URI: | http://hdl.handle.net/11455/36987 | 其他識別: | U0005-2506201017290400 |
Appears in Collections: | 農藝學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.