Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3703
標題: 精密支架結合奈米材料於軟骨組織工程上的應用
The application of precision scaffolds combined with nanomaterials for cartilage tissue engineering
作者: 嚴鴻仁
Yen, Hung-Jen
關鍵字: precision scaffold;精密支架;cartilage regeneration;PLGA;type II collagen;gold nanoparticles;silver nanoparticles;cytotoxicity;immunological response;軟骨再生;聚乳酸-甘醇酸;第二型膠原蛋白;奈米金;奈米銀;細胞毒性;免疫反應
出版社: 化學工程學系所
引用: Chapter 1 [1] Laurencin CT, Khan Y, Kofron M, El-Amin S, Botchwey E, Yu X, Cooper Jr. JA. The ABJS Nicolas Andry Award: tissue engineering of bone and ligament: a 15-year perspective. Clin Orthop Relat Res 2006;447:221-36. [2] Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 2002;10:432-63. [3] Felson DT, Zhang YQ. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthrit Rheum 1998;41:1343-55. [4] Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB Jr, Erggelet C, Minas T, Peterson L. Articular cartilage lesions of the knee. Am J Sports Med 1998;26:853-861. [5] Brittberg M, Tallheden T, Sjogren-Jansson B, Lindahl A, Peterson L. Autologous chondrocytes used for articular cartilage repair: an update. Clin Orthop Relat Res 2001;391:S337-48. [6] Christian Hendrich, Ulrich Nöth, Jochen Eulert (eds.). Cartilage surgery and future perspectives. Springer. 2003. [7] von der Mark K, Gauss V, von der Mark H, Muller P. Relationship between cell shape and type of collagen synthesized as chondrocytes lose their cartilage phenotype in culture. Nature 1977;267:531-2. [8] Caplan Al. Mesenchymal stem cells. J Orthop Res 1991;9:41-50. [9] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas F, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7. [10] Toolan BC, Frenkel SR, Pachence JM, Yalowitz L, Alexander H. Effects of growth-factor-enhanced culture on a chondrocyte-collagen implant for cartilage repair. J Biomed Mater Res 1996;31:273-80. [11] Frenkel SR, Toolan B, Menche D, Pitman MI, Pachence JM. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Jt Surg 1997;79:831-6. [12] Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering articular cartilage. J Biomed Mater Res 1997;34:211-20. [13] Pieper JS, van der Kraan PM, Hafmans T, Kamp J, Buma P, van Susante JLC, van den Berg WB, Veerkamp JH, van Kuppevelt TH. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 2002;23:3183-92. [14] Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, Kastenbauer E, Naumann A. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 1998;42:172-81. [15] Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials 1997;18:583-90. [16] Madihally SV, Matthew HWT. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999;20:1133-42. [17] Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993;27:11-23. [18] Ishaug-Riley SL, Okun LE, Prado G, Applegate MA, Ratcliffe A. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials 1999;20:2245-6. [19] Hsu S, Tsai CL, Tang CM. Evaluation of the cellular adhesion and growth on biodegradable polymers using immortalized rat chondrocytes. Artificial Organs 2002;26:647-58. [20] Hsu S, Chang SH, Yen HJ, Whu SW, Tsai CL, Chen DC. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Artificial Organs 2006;30:42-55. [21] Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24:2077-82. [22] Schwartz RE, Grande DA. Cartilage repair unit. US Patent No. 5769899, 1998. [23] Chen G, Sato T, Ushida T, Ochiai N, Tateishi T. Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Eng 2004;10:323-30. [24] Lanza RP, Langer R, Vacanti JP. Principles of tissue engineering, 2nd Ed. Academic Press, 2000. [25] Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cellular response. Biomaterials 1996;17:137-46. [26] Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999;20:573- 88. [27] Curtis ASG, Wilkinson CDW. Topographical control of cells. Biomaterials 1997;18:1573- 83. [28] Barbucci R, Pasqui D, Wirsen A, Affrossman S, Curtis A, Tetta C. Micro and nano-structured surfaces. J Mater Sci Mater Med 2003;14:721-5. [29] Clark P, Connolly P, Cutis AS, Dow JA, Wilkinson CD. Cell guidance by ultrafine topography in vitro. J Cell Sci. 1991;99:73-7. [30] Rajnicek AS, McCraig CD. Guidance of CNS growth cones by substratum grooves and ridges: effects of inhibitors of the cytoskeleton, calcium channels and signal transduction pathways. J Cell Sci. 1997;110:2925-24. [31] Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis ASG. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 2002;23:2945-54. [32] Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, Wang S. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials 2005;26:4453-59. [33] Hsu S, Tang CM, Lin CC. Biocompatibility of poly(e-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Biomaterials 2004;25:5593-601. [34] Curtis ASG, Wilkinson CDW. New depths in cell behaviour: reactions of cells to nanotopography. Biochem Soc Symp 1999;65:15-26. [35] Schindler M, Ahmed I, Kamal J, Nur-E-Kamal A, Grafe TH, Chung HY, Meiners S. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 2005;26:5624-31. [36] Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 2006;12:1197-211. [37] Kay S, Thapa A, Haberstroh KM, Webster TJ. Nanostructured polymer: nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 2002;8(5):753-61. [38] Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 2005;26:3075-82. [39] Webster TJ, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000;21:1803-10. Chapter 2 [1] Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymer. J Biomed Mater Res 1993;27:11-23. [2] Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering articular cartilage. J Biomed Mater Res 1997;34:211-20. [3] Ameer GA, Mahmood TA, Langer R. A biodegradable composite scaffold for cell transplantation. J Orthop Res 2002;20(1):16-9. [4] Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24:2077-82. [5] Schwartz RE, Grande DA. Cartilage repair unit. US Patent No. 5769899, 1998. [6] Lanza RP, Langer R, Vacanti JP. Principles of tissue engineering, 2nd Ed. Academic Press, 2000. [7] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529-43. [8] Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 2001;55:203-16. [9] Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002;23:1169-85. [10] Ishaug-Riley SL, Okun LE, Prado G, Applegate MA, Ratcliffe A. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials 1999;20:2245-56. [11] Dounchis J, Harwood FL, Chen AC, Bae WC, Sah RL, Coutts RD, et al. Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop 2000;377:248-64. [12] Giurea A, Klein TJ, Chen AC, Goomer RS, Coutts RD, Akeson WH, Amiel D, Sah RL. Adhesion of perichondrial cells to a polylactic acid scaffold. Journal of Orthopaedic Research 2003;21:584-9. [13] Schantz JT, Hutmacher DW, Ng KW, Khor HL, Lim TC, Teoh SH. Evaluation of a tissue engineered membrane–cell construct for guided bone regeneration. Int J Oral Max Implants 2002;17:161-74. [14] Hsu S, Tsai C, Tang C. Evaluation of the cellular affinity and compatibility to biodegradable polyesters and type-II collagen-modified scaffold using immortalized rat chondrocytes. Artificial Organs 2002;26:647-58. [15] Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2006;27:974-85. [16] Tsai C, Hsu S, Cheng W. The effect of different solvents and crosslinkers on cytocompatibility of type II collagen scaffolds for chondrocyte seeding. Artificial Organs 2002;26:18-26. [17] Freshney RI. Culture of animal cells: a manual of basic technique, 3rd edition. New York: Wiley-Liss, 1994:331-32. [18] Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J Biomed Mater Res 2000;51:376-82. [19] Kim YJ, Sah RY, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 1988;174:168-76. [20] Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate culture, by use of 1,9-dimethylmethylene blue. Anal Biochem 1996;243:189-91. [21] Bergman M, Loxley R. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal Biochem 1961;35(12):1961-65. [22] Hollander AP, Heathfield TF, Webber C, et al. Increased damage to type II collagen in osteoarthritic articular cartilage defected by a new immunoassay. J Clin Invest 1994;93:1722-32. [23] Burg KJL, Holder WD Jr, Culberson CR, Beiler RJ, Greene KG, Loebsack AB, Roland WD, Eiselt P, Mooney DJ, Halberstadt CR. Comparative study of seeding methods for three-dimensional polymeric scaffolds. J Biomed Mater Res 2000;51:642-9. [24] Nehrer S, Breinan HA, Ramappa A, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res (Appl Biomater) 1997;38:95-104. [25] Pieper JS, van der Kraan PM, Hafmans T, Kamp J, Buma P, van Susante JLC, van den Berg WB, Veerkamp JH, van Kuppevelt TH. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 2002;23:3183-92. [26] 鄭家昇,熔融層積成型系統製成精密支架之細胞植入、分化與生物反應器培養。國立中興大學碩士論文 民91 Chapter 3 [1] Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB Jr, Erggelet C, Minas T, Peterson L. Articular cartilage lesions of the knee. Am J Sports Med 1998;26:853-61. [2] Vacanti CA, Langer R, Schloo B, Vacanti JP. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstruct Surg 1991;88:753-9. [3] von Schroeder HP, Kwan M, Amiel D, Coutts RD. The use of polylactic acid matrix and periosteal grafts for the reconstruction of rabbit knee articular defects. J Biomed Mater Res 1991;25:329-39. [4] Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000;21:431-40. [5] Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R. Laminated three-dimensional biodegradable forms for use in tissue engineering. Biomaterials 1993;14:323-30. [6] Mercier NR, Costantino HR, Tracy MA, Bonassar LJ. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Biomaterials 2005;26:1945-52. [7] Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly lactic-glycolic acid (PLGA) scaffold. Biomaterials 2005;26:4273-9. [8] Wu W, Feng X, Mao T, Feng X, Ouyangc HW, Zhao G, Chen F. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: A preliminary study in nude mice. Br J Oral Maxillofac Surg. 2007;45:272-8. [9] Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 2005;26:3075-82. [10] Solchaga LA, Temenoff JS, Gao J, Mikos AG, Caplan AI, Goldberg VM. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis and Cartilage 2005;13:297-309. [11] Chen G, Sato T, Tanaka J, Tateishi T. Preparation of a biphasic scaffold for osteochondral tissue engineering. Materials Science and Engineering C 2006;26:118-23. [12] Babensee JE, Anderson JM, Melntire LV, Mikos AG. Host response to tissue engineered devices. Adv Drug Deliv Rev 1998;33:111-39. [13] Pieper JS, van der Krann PM, Hafmans T, Kamp J, Buma P, van Susante JLC, van den Berg WB, Veerkamp JH, van Kuppevelt TH. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 2002;23:3183-92. [14] Chang CH, Kuo TF, Lin CC, Chou CH, Chen KH, Lin FH, Liu HC. Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin–chondroitin–hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials 2006;27:1876-88. [15] Mouw JK, Case ND, Guldberg RE, Plaas AHK, Levenston ME. Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. OsteoArthritis and Cartilage 2005;13:828-36. [16] Solchaga LA, Dennis JE, Goldberg VM, Caplan AI. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 1999;17:205-13. [17] Chen G, Sato T, Ushida T, Hirochika R, Shirasaki Y, Ochiai N, Tateishi T. The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res 2003;67A: 1170-80. [18] Sato T, Chen G, Ushida T, Ishii T, Ochiai N, Tateishi T, Tanaka J. Evaluation of PLLA–collagen hybrid sponge as a scaffold for cartilage tissue engineering. Materials Science and Engineering C 2004;24:365-72. [19] Cohen SB, Meirisch CM, Wilson HA, Diduch DR. The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials 2003;24:2653-60. [20] Hsu SH, Chang SH, Yen HJ, Whu SW, Tsai CL, Chen DC. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Artificial Organs 2006;30(1):42-55. [21] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529-43. [22] Woodfield TBF, Malda J, de Wijn J, Peters F, Riesle J, van Blitterswijk CA. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 2004;25:4149-61. [23] Malda J, Woodfield TBF, van der Vloodt F, Kooy FK, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials 2004;25:5773-80. [24] Malda J, Woodfield TBF, van der Vloodt F, Wilson C, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 2005;26:63-72. [25] Hsu SH, Yen HJ, Tseng CS, Cheng CS, Tsain CL. Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing. J Biomed Mater Res 2007;80B:519-27. [26] Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002;23:1169-85. [27] Tsai C, Hsu S, Cheng W. The effect of different solvents and crosslinkers on cytocompatibility of type II collagen scaffolds for chondrocyte seeding. Artificial Organs 2002;26:18-26. [28] Hsu S, Tsai C, Tang C. Evaluation of the cellular affinity and compatibility to biodegradable polyesters and type-II collagen-modified scaffold using immortalized rat chondrocytes. Artificial Organs 2002;26:647-58. [29] Freshney RI. Culture of animal cells: a manual of basic technique, 3rd edition. New York: Wiley-Liss, 1994:331-2. [30] Kim YJ, Sah RY, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 1988;174:168-76. [31] Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate culture, by use of 1,9-dimethylmethylene blue. Anal Biochem 1996;243:189-91. [32] Hutmacher DW, Schantz JT, Zein I, Ng KW, Tan KC, Teoh SH. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mat Res 2001;55:203-16. [33] Wu L, Ding J. In vitro degradation of three-dimensional porous poly(d,l-lactide-coglycolide) scaffolds for tissue engineering. Biomaterials 2004;25:5821-30. [34] Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 2002;23:4739-51. [35] Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2006;27:974-85. [36] Chen G, Ushida T, Tateishi T. A biodegradable hybrid sponge nested with collagen microsponges. J Biomed Mater Res 2000;51:273-9. [37] Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 1995;16:1123-30. [38] Göpferich A. Mechanism of polymer degradation and erosion. Biomaterials 1996;17:103-14. [39] Brekke JH. A rationale for delivery of osteoinductive proteins. Tissue Engineering 1996;2:97-114. [40] Brekke JH, Toth JM. Principles of tissue engineering applied to programmable osteogenesis. J Biomed Mater Res 1998;43:380-98. [41] Frenkel SR, Bradica G, Brekke JH, Goldman SM, Ieska K, Issack P, Bong MR, Tian H, Gokhale J, Coutts RD, Kronengold RT. Regeneration of articular cartilage-Evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthritis and Cartilage 2005;13:796-807. [42] Lu L, Mikos AG. The importance of new processing techniques in tissue engineering. Mater Res Soc Bull 1996;21:28-32. [43] Deschamps AA, van Apeldoorn AA, Hayen H, de Bruijn JD, Karst U, Grijpma DW, Feijen J. In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate). Biomaterials 2004;25:247-58. [44] Shao XX, Hutmacher DW, Ho ST, Goh JCH, Lee EH. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 2006;27:1071-80. Chapter 4 [1] Vacanti CA, Langer R, Schloo B, Vacanti JP. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstruct Surg 1991;88:753-59. [2] von Schroeder HP, Kwan M, Amiel D, Coutts RD. The use of polylactic acid matrix and periosteal grafts for the reconstruction of rabbit knee articular defects. J Biomed Mater Res 1991;25:329-39. [3] Frenkel SR, Toolan B, Menche D, Cancedda MI. Producing prefabricated organs via tissue engineering. IEEE Engineering in Medicine and Biology March/April, 1997;73. [4] Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000;21:431-40. [5] Toolan BC, Frenkel SR, Pachence JM, Yalowitz L, Alexander H. Effects of growth-factor-enhanced culture on a chondrocyte-collagen implant for cartilage repair. J Biomed Mater Res 1996;31:273-80. [6] Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering articular cartilage. J Biomed Mater Res 1997;34:211-20. [7] Pieper JS, van der Kraan PM, Hafmans T, Kamp J, Buma P, van Susante JLC, van den Berg WB, Veerkamp JH, van Kuppevelt TH. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 2002;23:3183-92. [8] Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, Kastenbauer E, Naumann A. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 1998;42:172-81. [9] Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials 1997;18:583-90. [10] Madihally SV, Matthew HWT. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999;20:1133-42. [11] Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993;27:11-23. [12] Ishaug-Riley SL, Okun LE, Prado G, Applegate MA, Ratcliffe A. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials 1999;20:2245-46. [13] Hsu S, Tsai CL, Tang CM. Evaluation of the cellular adhesion and growth on biodegradable polymers using immortalized rat chondrocytes. Artificial Organs 2002;26:647-58. [14] Hsu S, Chang SH, Yen HJ, Whu SW, Tsai CL, Chen DC. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Artificial Organs 2006;30:42-55. [15] Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24:2077-82. [16] Schwartz RE, Grande DA. Cartilage repair unit. US Patent No. 5769899, 1998. [17] Chen G, Sato T, Ushida T, Ochiai N, Tateishi T. Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Eng 2004;10:323-30. [18] Lanza RP, Langer R, Vacanti JP. Principles of tissue engineering, 2nd Ed. Academic Press, 2000. [19] Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 2001;7:679-89. [20] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529-43. [21] Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 2001;55:203-16. [22] Malda J, Woodfield TBF, van der Vloodt F, Kooy FK, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineering cartilaginous constructs. Biomaterials 2004;25:5773-80. [23] Malda J, Woodfield TBF, van der Vloodt F, Wilson C, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials, 2005;26:63-72. [24] Hsu S, Yen HJ, Tseng CS, Cheng CS, Tsai CL. Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing. J Biomed Mater Res 2007;80B:519-27. [25] Landers R, Hübner U, Schmelzeisen R, Mülhaupt R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 2002;23:4437-47. [26] Ang TH, Sultana FSA, Hutmacher DW, Wong YS, Fuh JYH, Mob XM, Loh HT, Burdet E, Teoh SH. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science and Engineering C 2002;20:35-42. [27] Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, Lin F, Wu R, Zhang R, Lu Q. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 2005;26:5864-71. [28] Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2006;27:974-85. [29] Freshney RI. Culture of animal cells: a manual of basic technique, 3rd edition. New York: Wiley-Liss, 1994;331-1. [30] Kim YJ, Sah RY, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 1988;174:168-76. [31] Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate culture, by use of 1,9-dimethylmethylene blue. Anal Biochem 1996;243:189-91. [32] Bergman M, Loxley R. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal Biochem 1961;35:1961-65. [33] Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, Poole AR. Increased damage to type II collagen in osteoarthritic articular cartilage defected by a new immunoassay. J Clin Invest 1994;93:1722-32. [34] Xiong Z, Yan YN, Wang SG, Zhang RJ, Zhang C. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scripta Materialia 2002;46:771-6. [35] Mao JS, Zhao LG, Yin YJ, Yao KD. Structure and properties of bilayer chitosan–gelatin scaffolds. Biomaterials 2003;24:1067-74. [36] Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999;20:573-88. [37] Lee SJ, Lee YM, Han CW, Lee HB, Khang G. Response of human chondrocytes on polymer surfaces with different micropore sizes for tissue-engineered cartilage. J Appl Polym Sci 2004;92:2784-90. [38] Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, Wang S. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials 2005;26:4453-9. [39] Bhardwaj T, Pilliar RM, Grynpas MD, Kandel RA. Effect of material geometry on cartilagenous tissue formation in vitro. J Biomed Mater Res 2001;57:190-9. [40] Hamilton DW, Riehle MO, Monaghan W, Curtis ASG. Articular chondrocyte passage number: Influence on adhesion, migration, cytoskeletal organization and phenotype in response to nano- and micro-metric topography. Cell Biology International 2005;29:408-21. [41] Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 2004;32:1728-43. [42] Newman P, Watt FM. Influence of cytochalasin D-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes. Exp Cell Res 1988;178:199-210. [43] Shao X, Goh JC, Hutmacher DW, Lee EH, Zigang G. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng 2006;12:1539-51. [44] Solchaga LA, Temenoff JS, Gao J, Mikos AG, Caplan AI, Goldberg VM. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis and Cartilage 2005;13:297-309. Chapter 5 [1] Kosher RA, Church RL. Stimulation of in vitro somite chondrogenesis by procollgen and collagen. Nature 1975;258:327-30. [2] von der Mark K, Gauss V, von der Mark H, Muller P. Relationship between cell shape and type of collagen synthesized as chondrocyte lose their cartilage phenotype in culture. Nature 1977;267:531-32. [3] Bissell MJ, Barcellos-Hoff MH. The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci Suppl 1987;8:327-43. [4] Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, Sledge CB, Yannas IV, Spector M. Canine chondroctyes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res (Appl Biomater) 1997;38:95-104. [5] Nehrer S, Breinan HA, Ramappa A, Hsu H-P, Minas T, Shortkroff S, Sledge CB, Yannas IV, Spector M. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 1998;19:2313-28. [6] Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M. Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials 1999;20:701-9. [7] Pieper JS, van der Krann PM, Hafmans T, Kamp J, Buma P, van Susante JLC, van den Berg WB, Veerkamp JH, van Kuppevelt TH. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 2002;23:3183-92. [8] Buma P, Pieper JS, van Tienen T, van Susante JLC, van der Kraan PM, Veerkamp JH, van den Berg WB, Veth RPH, van Kuppevelt TH. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects-A study in rabbits. Biomaterials 2003;24:3255-63. [9] Tsai CL, Hsu S, Cheng WL. The effect of different solvents and crosslinkers on cytocompatibility of type II collagen scaffolds for chondrocyte seeding. Artificial Organs 2002;26:18-26. [10] Hsu S, Tsai CL, Tang CM. Evaluation of the cellular adhesion and growth on biodegradable polymers using immortalized rat chondrocytes. Artificial Organs 2002;26:647-58. [11] Hsu S, Chang SH, Yen HJ, Whu SW, Tsai CL, Chen DC. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Artificial Organs 2006;30(1):42-55. [12] Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis ASG. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 2002;23:2945-54. [13] Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, Wang S. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials 2005;26:4453-59. [14] Hsu S, Tang CM, Lin CC. Biocompatibility of poly( -caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Biomaterials 2004;25:5593-601. [15] Curtis ASG, Wilkinson CDW. New depths in cell behaviour: reactions of cells to nanotopography. Biochem Soc Symp 1999;65:15-26. [16] Schindler M, Ahmed I, Kamal J, Nur-E-Kamal A, Grafe TH, Chung HY, Meiners S. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 2005;26:5624-31. [17] Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 2006;12:1197-211. [18] Kay S, Thapa A, Haberstroh KM, Webster TJ. Nanostructured polymer: nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 2002;8(5):753-61. [19] Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 2005;26:3075-82. [20] Webster TJ, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000;21:1803-10. [21] Hayat MA. Colloidal gold: principles, methods and applications. vol. 3, Academic Press, San Diego, 1989. [22] Hsu S, Chou CW, Tseng SM. Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites macromol. Mater Eng 2004;289:1096-101. [23] Hsu S, Chou CW. Enhanced biostability of polyurethane containing gold nanoparticles. Polymer Degradation and Stability 2004;85:675-80. [24] Daniel H, Josette B, Jean-Claude B. Biochemical and physicochemical characterization of pepsin-solubilized type II collagen from bovin articular cartilage. Biochem J 1977;161:303-12. [25] Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technol 1995;28:25-30. [26] Freshney RI. Culture of animal cells: a manual of basic technique. 3rd edition. New York: Wiley-Liss, 1994:331-32. [27] Griess P. Bemerkugen zu der abhandlung der HH:Weselsky and Benedikt "Über einige Azoverbindungen". Ber Deutsch Chem Ges 1879;12:426-28. [28] Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters 2006;6:662-68. [29] Hsu S, Jamieson AM, Blackwell J. Viscoelastic studies of extracellular matrix interactions in a model native collagen gel system. Biorheology 1994;31:21-36. [30] Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG. Rheological behaviour and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineer
摘要: 
論文的第一部份利用熱熔融層積成型法製作精密支架應用於軟骨及骨組織再生,結果顯示具有高孔隙及孔洞連通性的精密支架有助於軟骨及骨細胞向內生長,而經第二型膠原蛋白改質的精密支架能促進軟骨細胞增生及分泌基質。基於這個結果,在第二部分我們評估利用第二型膠原蛋白改質高孔隙度的聚乳酸-甘醇酸精密支架在軟骨組織工程上的應用,經植入軟骨細胞培養四週後,雖然細胞仍均勻分布於支架中及在支架周圍形成新生軟骨組織,但聚乳酸-甘醇酸的酸性降解產物已影響到細胞生長,此研究發現對於聚乳酸-甘醇酸材料需改以低溫製程的成型法來製作精密支架。故在第三部份,我們建立了低溫層積成型法來製作支架,利用不同濃度的聚乳酸-甘醇酸高分子溶液製作出的支架,具有與軟骨組織較為相近的機械性質,且軟骨細胞在由低濃度(15%及20%)製作的支架上,能保持較為圓形的型態,細胞增生及分泌基質皆較佳,此外,在經28天體外培養後,細胞於支架中能形成新生軟骨組織,由此得知,利用低溫層積成型法可成功的製作出合適的軟骨組織工程支架。在另一方面,我們嘗試將第二型膠原蛋白添加入不同濃度0.05%, 0.1%, 0.5%, 1% or 2.5% (w/w)的奈米金(5 nm)顆粒,評估軟骨細胞於此奈米複合材料上的反應,結果發現,在添加入≦0.5%的奈米金可促進膠原蛋白的機械性質及黏度,也促進其抗自由基的能力;在0.1%的基材上能促進軟骨細胞增生,在基因表現上,Type I collagen, aggrecan 及 Sox 9表現也隨著加入的奈米金濃度而上升,但在2.5%稍微下降,此研究發現,加入適當量的奈米金能在第二型膠原蛋白中均勻分散,增加其機械性質及抗氧化性,對軟骨細胞可促進增生及某些基因表現。此外,將以老鼠巨噬細胞株來評估奈米金及奈米銀的毒性及免疫反應,結果顯示,在培養液中加入10 ppm的奈米金或奈米銀顆粒會造成細胞生長明顯下降,而奈米金比奈米銀在細胞毒性及免疫基因表現(IL-1, IL-6 and TNF-a)方面,皆有較大的反應,此結果可能是因為奈米金容易吸附血清中的蛋白質,導致被細胞吞噬作用的路徑與奈米銀不同而引起。

In the first part, fused deposition manufacturing (FDM) was utilized to fabricate the precision scaffolds for cartilage and bone regeneration. The results indicated that the highly porous and interconnected structure of precision scaffolds could benefit chondrocytes and osteoblasts ingrowth. Chondrocyte proliferated well with matrix accumulation in precision scaffolds coated with type II collagen at four weeks of in vitro culture. Based on the results of first part, highly porous poly(D,L-lactide-co-glycolide) (PLGA) scaffolds modified by type II collagen for cartilage tissue engineering were fabricated in the second part. The scaffolds were seeded with porcine articular chondrocytes and cultured for 4 weeks. Although the cells were well distributed in the interior of the constructs with a large fiber interval and formed neocartilage around, the acidic degradation products of PLGA may have influenced cell growth. The study also suggested that a low processing temperature may be required to produce PLGA precision scaffolds using FDM. Therefore, the liquid-frozen deposition manufacturing (LFDM) system based on an improvement of the FDM process was developed. PLGA precision scaffolds were fabricated by LFDM from the PLGA solution of different concentrations. LFDM scaffolds in general had mechanical strength better matched to that of the native cartilage, compared to FDM scaffolds. Chondrocytes in LFDM scaffolds made from low concentrations (15-20%) of PLGA solution maintained the round shape, well proliferated and secreted abundant extracellular matrix. Furthermore, neocartilage formation was observed in LFDM scaffolds seeded with porcine articular chondrocytes after 28 days of culture. The LFDM system successfully offered a useful way to fabricate scaffolds for cartilage tissue engineering applications. On the other hand, the nanocomposites (denoted “CII-Au”) of porcine type II collagen (CII) with 0.05%, 0.1%, 0.5%, 1% or 2.5% (w/w) gold nanoparticles (~5 nm), were fabricated for potential use in cartilage tissue engineering. The addition of gold at low concentrations (≦0.5%) increased the modulus and viscosity as well as the free radical scavenging ability. Chondrocytes proliferation on CII-Au 0.1% was promoted. Type I collagen, aggrecan and Sox 9 gene expressions increased with the increased Au content, but slightly decreased at 2.5% Au. Au at an appropriate amount could be well dispersed in CII, and enhanced the material modulus, antioxidant effect, as well as the chondrocyte growth and matrix production. Furthermore, cytotoxicity and immunological response of gold and silver nanoparticles with various sizes were evaluated by using a murine macrophage cell line. The results showed the cell proliferation for treatment with nanoparticles at a concentration of 10 ppm decreased dramatically in both nanoparticles. Gold nanoparticles had greater effect of cytotoxicity and proinflammatory genes expression (IL-1, IL-6 and TNF-a)than silver nanoparticles in the same size. These results were speculated that gold nanoparticles were easily adsorbed by the nonspecific serum proteins due to negative surface charge and induced different endocytosis pathway.
URI: http://hdl.handle.net/11455/3703
其他識別: U0005-2508200813093100
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.