Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3710
標題: 對流效應對於電鍍銅填塞微米級盲孔之研究
Studies of Convection Effect on Microvia Filling over Copper Electroplating
作者: 廖顯宗
Liao, Sian-Zong
關鍵字: electroplating;電鍍;copper;PCB;convection;銅;印刷電路板;對流
出版社: 化學工程學系所
引用: 1. 林定浩,“高密度印刷電路板技術”,台灣電路板協會,第五章,民國93年。 2. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene copper electroplating for chip interconnections”, IBM J. Res. Develop. 42, C383, 1998. 3. 胡啟章,“電化學原理與方法”,五南圖書出版股份有限公司,民國92年。 4. 田福助,“電化學理論與應用”,新科技書局,民國七十六年。 5. 熊楚強、王月,“電化學”,文京圖書出版,民國八十六年。 6. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction”, J. Electrochem. Soc., 142 , C87, 1995. 7. W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen, “Roles of Chloride Ion in MicroVia Filling by Copper Electrodeposition II. Studies Using Electron Paramagnetic Resonance and Galvanostatic Measurements”, J. Electrochem. Soc. 152, C77, 2005. 8. W. P. Dow, H. S. Huang, M. Y. Yen, and H. C.Huang, “Influence of Convection-Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating”, J. Electrochem. Soc., 152, C425, 2005. 9. M. Yokoi, S. Konishi,T. Hayaashi, “Adsorption behavior of polyoxyenthylene glycol on the copper surface in an acid copper sulphate bath”, Denki Kagaku, 52, C218, 1984. 10. J. J. Kelly, A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol Ⅰ. Quartz Crystal Microbalance Study”, J. Electrochem. Soc., 145, 3472, 1998. 11. S. C. Chang﹐J.M. Shieh﹐K.C. Lin﹐B.T. Dai﹐T.C. Wang, C.F. Chen, M.S. Feng﹐Y.H. Li , C.P. Lu﹐”Wetting effect on gap filling submicron damascene by an electrolyte” free of levelers”﹐ J. Vac. Sci. Technol. B 20,C1311﹐2002﹒ 12. Z. V. Feng,A. A. Gewirth, “Inhibition Due to the Interation of polyethylene Glycol, Chloride, and Copper in plating baths:A Surface Enhanced Raman Study”, J. Phys. Chem. B., 107,C 9415, 2003. 13. W. P. Dow, M. Y. Yen, W. B. Lin, S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling By Copper Electroplating”, J. Electrochem. Soc., 152, C769, 2005. 14. E. Mattsson, J. O. M. Bockris, “Galvanostic studies of The Kinetic of Deposition and Dissolution In the Copper+Copper Sulphate System”, Trans. Farady Soc., 55,C 1586, 1959. 15. M. Fleischmann, H. R. Thirsk, “Andoic Electrocrystallization”, Electrochim. Acta, 2,C22,1960. 16. 方景禮,“電鍍添加劑總論”,傳勝出版社,第14章,民國85年。 17. J. J. Kelly and A. C. West, “Leveling of 200 nm Features by Organic Additives”, Electrochem. Solid-State Lett., 2, C561, 1999. 18. P. Taephaisitphongse, Y. Cao, and A. C. West, “Electrochemical and Fill studies of a Multicomponent Additive Package for Copper Deposition”, J. Electrochem. Soc, 148, C492, 2001. 19. G. K. Gomma, “Effect of azole compounds on corrosion of copper in acid medium”, Mater. Chem. and Phys., 56, C27, 1998. 20. K. Kondo, N. Yamakawa, Z. Tanaka, and K.Hayashi, “Copper damascene electrodeposition and additives”, J. Electroanal. Chem., 559, C137, 2003. 21. W. P. Dow, C.W. Liu, “Evaluating the filling performance of a copper plating formula using a simple galvanostat method”﹐ J. Electrochem. Soc. 153, C190, 2006. 22. T. P. Moffat, D. Wheeler, and D. Josell, “Electrodeposition of Copper in the SPS-PEG-Cl Additive System. I. Kinetic Measurements: Influence of SPS”, J. Electrochem. Soc., 151, C262 ,2004. 23. N. Zukauskaite and A. Malinauskas, “Electrocatalysis by a Brightener in Copper Electrodeposition ”, Sov. Electrochem., 24, C1564, 1989. 24. D. Josell, D. Wheeler, W. H. Huber, and T. P. Moffat, “Superconformal Electrodeposition in Submicron Features”, Phys. Rev. Lett.4,C287, 2001. 25. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly,G. R. Stafford, D.Josell, “Superconformal Electrodeposition of Copper in 500-90nm Features”, J. Electrochem. Soc., 147, C4524, 2000. 26. J. P. Healy and D. Pletcher, “The chemistry of the additives in an acid copper electroplating bath PartⅡ.The instability of 4, 5-dithiaoctane-1, 8-disulphonic acid in the bath on open circuit”, J. Electroanal. Chem., 338, C167, 1992. 27. D. Josell, D. Wheeler, W. H. Huber, J. E. Bonevich and, T. P. Moffat, “A simple Equation for Predicting Superconformal Electrodeposition in Submicronmeter Trenches”, J. Electrochem. Soc., 148, C767, 2001. 28. T. P. Moffat, D. Wheeler, W. H. Huber, and D. Josell, “Superconformal Electrodeposition of Copper”, Electrochem. Solid-State Lett., 128,C26, 2001. 29. A. C. West, S. Mayer, and J. Reid, “A Superfilling Model that Predicts Bump Formation”, Electrochem. Solid-State Lett., 4, C50, 2001. 30. Y. Cao, P. Taephaisitphongse, R. Chalupa, and A. C. West, “Three-Additive Model of Superfilling of Copper”, J. Electrochem. Soc., 148, C446, 2001. 31. 汪建民,“材料分析”,中國材料科學學會,民國九十年。 32. 林敬二、林宗義譯,“儀器分析”,美亞書版股份有限公司,民國八十三年。 33. M. Hasegawa, Y. Negishi, T. Nakanishi, and T. Osaka, “Effects of Additives on Copper Electrodeposition in Submicrometer Trenches”, J. Electrochem. Soc., 152, C221,2005. 34. Jenq, SN, Author, Reprint Author Jenq Shrane Ning Jenq, Shrane Ning , Wan, CC, “Tapered Cu pattern metallization by electrodeposition through mask”﹐ Electrochemical and Solid-State Lett., 9,C167﹐2006﹒ 35. K. Kondo,T. Matsumoto, and K. Watanabe,“Role of Additives for Copper Damascene Electrodeposition”﹐ J. Electrochem. Soc. 151﹐C250,2004﹒ 36. R. Akolkar , U. Landauz﹐“A Time-Dependent Transport-Kinetics Model for Additive Interactions in Copper Interconnect Metallization”﹐J. Electrochem. Soc., 151,C702,2004﹒ 37. K. Kondo﹐T. Yonezawa﹐D. Mikami﹐T. Okubo﹐Y. Taguchi﹐K.Takahashi﹐and D. P. Barkeye﹐“High-Aspect-Ratio Copper-Via-Filling for Three-DimensionalChip Stacking” ﹐J. Electrochem. Soc, 152, C173 ,2005. 38. W. P. Dow﹐M.Y. Yen,C. W. Chou﹐C. W. Liu﹐W. H. Yang﹐and C. H. Chen﹐“Practical Monitoring of Filling Performance in a Copper Plating Bath”﹐Electrochemical and Solid-State Lett., 9,C134,2006﹒
摘要: 
利用電化學電鍍法,應用在IC、印刷電路板的導孔填充與導線金屬化,已經是業界熱門領域之一。然而在電鍍填孔上最重要的還是配方的開發,目前主流仍是加速劑與抑制劑,但關於平整劑的研究,是工業界所迫切需求的。為了控制品質,就必須瞭解添加劑的特性,以及電鍍填孔的模式,才能進一步的完成微米盲孔的填充。
到目前為止,在填充金屬化孔洞領域裡,已經提出幾種填充機制,而其中之一的機制為因加速劑覆蓋率提升而造成曲率(curvature-enhanced accelerator coverage ,CEAC),加速劑在電鍍過程中,會因為增加孔底銅沉積而逐漸減少孔底的沉積面積,因此累積在孔底中,造成孔底形成曲率形狀。
氯離子對於抑制劑來說就像是根支柱物。然而氯離子卻會受到陰極電位的排斥,不過氯離子在陰極表面上的通量是可以受到強對流而有所增加。當強對流選擇性的作用在板面上時,抑制劑就在板面上提升吸附的能力,也就造成銅沉積速率下降,這種因為對流產生的抑制增益就稱作對流影響吸附(convection-dependent adsorption,CDA)。
另外一面,當孔洞變得較淺短的時候,氯離子的選擇性通量也會因此變差。隨著電鍍時間增加,孔洞深度距離就會變成更為淺短。把電鍍時間區分成三個階段而討論。第一個階段為30分鐘,第二個階段為50分鐘,第三個階段為70分鐘。當平整劑JGB加入到含有PEG、Cl、SPS的電鍍液裡,可以在第一階段的時候就觀察到明顯的CDA效應。這樣的結果證明出CDA最佳效果就是發生在當孔洞還沒變淺短的時候。
然而,硫酸在電鍍液中也是扮演一個添加劑的角色。研究硫酸對於CDA的影響是相當重要的,不同硫酸濃度下,填孔能力已經不再能用電位差(Δη)來預測,因為其中的影響不只是單純的物理因素,還包含其他原因。
CEAC以及CDA行為影響填塞盲孔。在使用孔洞側壁無銅層的特定設計的PCB時,能讓填充機制明朗化。使用這樣的孔洞不會在電鍍過程中產生CEAC的效應。當加入JGB時,並藉由這種孔洞證明出CDA的效果。當電鍍液未加入JGB時,整個填充盲孔就是由CEAC所主導。
URI: http://hdl.handle.net/11455/3710
其他識別: U0005-2907200815265500
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.