Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3713
標題: 利用分子自組裝方法進行鍍銅之光澤劑濃度分析
Brightener analysis by means of Self-Assembled-Monolayer concept used for Copper Electroplating
作者: 邱詠達
Chiu, Yong-Da
關鍵字: Brightener analysis by means of Self-Assembled-Monolayer concept used for Copper Electroplating;利用分子自組裝方法進行鍍銅之光澤劑濃度分析
出版社: 化學工程學系所
引用: 1.毫微米通訊, 第八卷第二期。 2.奈米通訊, 第五卷第三期。 3. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, H. Deligianni, “Damascene copper electroplating for chip interconnections”, IBM. J.Res. Develop. 42 , 567-574 ,(1998). 4.W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen,“Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition II.Studies Using EPR and Galvanostatic Measurements”, J. Electrochem. Soc., 152, C77, (2005). 5.Myungchan Kang and Andrew A. Gewirth,“Influence of Additives on Copper Electrodeposition on Physical Vapor Deposited (PVD) Copper Substrates”, J. Electrochem. Soc., 150, (2003). 6.N. Zukauskaite and A. Malinauskas,“Electrocatalysis by a Brightener in Copper Electrodeposition”, Sov Electrochem., 24, 1564, (1989). 7.E. E. Farndon, F. C. Walsh, S. A. Campbell, “Effect of thiourea, benzotriazole and 4,5-dithiaoctane-1,8-disulphonic acid on the kinetics of copper deposition from dilute acid sulphate solutions”, J. Appl. Electrochem., 25, 574, (1995). 8.E. Mattsson and J. O''M. Bockris,“Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system”, Trans. Faraday Soc., 55, 1586, (1959). 9.M. Fleischmann and H. R. Thirsk, “Anodic electrocrystallization”, Electrochim. Acta., 2, 22, (1960). 10.M.Yokoi, S.Konishi, and T. Hayaashi, “Adsorptioin behavior of polyoxyenthylene glycol on the copper surface in an acid copper sulphate bath”, Denki Kagaku, 52, 218, (1984) 11. Z. V. Feng, X. Li, and A. A. Gewirth, “Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study”, J. Phys. Chem. B., 107, 9415, (2003). 12. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski,“Chloride Ion Catalysis of the Copper Deposition Reaction”, J. Electrochem. Soc., 142, L87, (1995). 13.M. J. Esplandiú, H. Hagenstrom, and D. M. Kolb,“Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrodes: 1. Surface Structure and Electrochemistry”, Langmuir, 17, 828 , (2001). 14.A. Kudelski,“Structures of monolayers formed from different HS - (CH2)2 - X thiols on gold, silver and copper: comparitive studies by surface-enhanced Raman scattering”, J. Raman Spectrosc., 34, 853, (2003). 15.J. A. M. Sondag-Huethorst and L. G. J. Fokkink, “Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold”, Langmuir, 11, 2237, (1996). 16.M.A. Schneeweiss, H. Hagenstrom, M. J. Esplandiu, D. M. Kolb, “Electrolyticmetal deposition onto chemically modified electrodes”, Appl. Phys. A., 69, 537, (1999). 17.A. Ulman,“Formation and Structure of Self-Assembled Monolayers”, Chem. Rev., 96, 1533, (1996). 18.C. Liu and D. A. Hutt, “ Fluxless Soldering of Copper Substrates Using Self-Assembled Monolayers for Preservation”, ieee transactions on components and packaging technologies., 29, 512, (2006). 19.熊楚強、 王月, “電化學”, 新文京開發出版有限公司, 第四章, 民國86年。
摘要: 
近年來電子產品朝向輕、薄、多功能的趨勢發展,使得積體電路元件的接點距離隨之縮小,信號傳送的速度則相對提高,相對需要高密度線路佈置,因此使得電路板朝向多層化印刷電路板,跟隨而來是線路與導孔的金屬化之問題。要如何將這此微米線路與導孔金屬化不會產生鍍層空洞及鬆散的金屬結構等等信賴度上的問題,是目前研究上的重要課題。
所以鍍槽液中添加劑,例如光澤劑、抑制劑、和平整劑的含量必須在適當的添加範圍內才能達到所需的電鍍填充效果,但是在電鍍的過程中添加劑是不斷的在消耗與裂解,要如何及時監控添加劑殘餘量,將是本實驗研究的方向,而本實驗主要是針對光澤劑為硫醇分子會在金屬基材上面自發性形成一致密的分子膜(SAMs),然後利用此一特性發現放入特定添加劑的分析杯中進行循環伏安法(Cyclic Voltammetry,CV),是可以拿來分析電鍍液裡頭所剩餘SPS的含量,而所能分析範圍的大小與所得到的線性迴歸值也跟特定的添加劑和所選的積分電流電位範圍有關。
本計劃所新開發出來光澤劑分析方法與CVS或HPLC比較起來,最大的優勢就是操作手法簡便並能迅速分析電鍍槽裡SPS的殘餘含量,且大量節省分析設備的成本開銷。

Recently, electronic products tend toward light, thin, short and multi-functional. The distance among integrated circuit devices shrinks progressively and the speed of signal transmission is correspondingly fast, so high density pattern must be designed to meet these requirements. Based on the consideration, printed circuit board with multilayer becomes the main trend of fabrication, of which the metallization between conducting wires and microvias is a big challenge. How to overcome the problem of void and loose structure formation during metallization over copper electroplating is an important toptic currently.
The additives used in a copper electroplating bath sush as accelerator, suppressor, and leveler must rang in optimum in order to achieve the requirement of metallization. However, these additives consume and decompose continuously in the process of electroplating. Hence, how to monitor the residual additives immediately is the major topic of our study. Our experiment focuses on the analysis of accelerator which can form a Self-Assembly Monolayer on a metal substrate. We employ this chemical characteristic and use cyclic voltammetry to analyze the remnant concentration of accelerator in the electroplating bath. The analytic range and linear regression of accelerator are dependent on specific additives employed in the analytic solution and on the choice of integral potential range.
The advantage of the developed analysis method is easy operation and quick analysis for residual accelerator in a copper electroplating bath as compared with CVS or HPLC. The analysis system also greatly saves the cost of equipment as well as above-mentioned advantages.
URI: http://hdl.handle.net/11455/3713
其他識別: U0005-3007200811283400
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.