Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3715
標題: ㄧ步脫層雲母於高分子複合材料之應用及其自我排列特性
One-Step Exfoliation of Synthetic Fluorinated Mica and their Unique Properties for Polymer Composites and Self-Assembly
作者: 邱智瑋
Chiu, Chih-Wei
關鍵字: Synthetic fluorinated mica;氟化雲母;Clay;Ionic exchange reaction;Intercalation;Exfoliation;Nanosilicate mica platelets;Nanocomposites;黏土;離子交換反應;插層;脫層;雲母奈米矽片;奈米複合材料
出版社: 化學工程學系所
引用: Chapter 1 Introduction and Literature Review (1) Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539-1641. (2) Utracki, L. A.; Sepehr, M.; Boccaleri, E. Polym. Adv. Technol. 2007, 18, 1-37. (3) Huang, H. Y.; Chen, W. F.; Kuo, P. L. J. Phys. Chem. B 2005, 109, 24288-24294. (4) Huang, S.; Dai , L.; Mau, A. W. H. J. Phys. Chem. B 1999, 103, 4223-4227. (5) Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1-63. (6) Tomalia, D. A. Mater. Today 2005, 8, 34-46. (7) Koo, C. M.; Kim, S. O.; Chung, I. J. Macromolecules 2003, 36, 2748-2757. (8) Zanetti, M.; Canavese, D.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Chem. Mater. 2002, 14, 189-193. (9) Theng, B. K. G. Formation and properties of clay-polymer complexes; Elsevier: New York, 1979. (10) Pinnavaia, T. J. Science 1983, 220, 365-371. (11) Wang, M. S.; Pinnavaia, T. J. Chem. Mater.1994, 6, 468-474. (12) Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J. Mater. Res. 1993, 8, 1179-1184. (13) Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832-8834. (14) Lin, J. J.; Chen, Y. M. Langmuir 2004, 20, 4261-4264. (15) Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Polym. Sci., Polym. Chem. 1993, 31, 1755-1758. (16) Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T. Nano Lett. 2001, 1, 271-272. (17) Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807-813. (18) Kawasumi, M.; Hasegawa, N.; Kato, M.; Usuki, A.; Okada, A. Macromolecules 1997, 30, 6333-6338. (19) Tyan, H. L.; Liu, Y. C.; Wei, K. H. Chem. Mater. 1999, 11, 1942-1947. (20) Triantafillidis, C. S.; LeBaron, P. C.; Pinnavaia, T. J. Chem. Mater. 2002, 14, 4088-4095. (21) Wang, H.; Zhao, T.; Zhi, L.; Yan, Y.; Yu, Y. Macromol. Rapid Commun. 2002, 23, 44-48. (22) Zeng, C.; Lee, L. J. Macromolecules 2001, 34, 4098-4103. (23) Beyer, F. L.; Tan, N. C. B.; Dasgupta, A.; Galvin, M. E. Chem. Mater. 2002, 14, 2983-2988. (24) Lepoittevin, B.; Pantoustier, N.; Alexandre, M.; Calberg, C.; Jeromeb, R.; Dubois, P. J. Mater. Chem. 2002, 12, 3528-3532. (25) Hasegawa, N.; Kawasumi, M.; Kato, M.; Usuki, A.; Okada, A. J. Appl. Polym. Sci. 1998, 67, 87-92. (26) Cseri, T.; Bekassy, S.; Figueras, F.; Rizner, S. J. Mol. Catal. A: Chem. 1995, 98, 101-107. (27) Ajjou, A. N.; Harouna, D.; Detellier, C.; Alper, H. J. Mol. Catal. A: Chem. 1997, 126, 55-60. (28) Celis, R.; Hermosin, M. C.; Carrizosa, M. J.; Cornejo, J. J. Agric. Food Chem. 2002, 50, 2324-2330. (29) Rawajfih, Z.; Nsour, N. J. Col. Inter. Sci. 2006, 298, 39-49. (30) Kiraly, Z.; Veisz, B.; Mastalir, A.; Kofarago, G. Langmuir 2001, 17, 5381-5387. (31) Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T. Nano. Lett. 2001, 1, 271-272. (32) Lai, Y. H.; Chiu, C. W.; Chen, J. G.; Wang, C. C.; Lin, J. J.; Lin, K. F.; Ho, K. C. Sol. Energy Mater. Sol. Cells 2009, 93, 1860-1864. (33) Sparks, D. L. Environmental Soil Chemistry, John Wiley & Sons, Ltd., 2003. (34) Wang, H.; Zhao, T.; Zhi, L.; Yan, Y.; Yu, Y. Macromol. Rapid Commun. 2002, 23, 44-48. (35) Tateyama, H.; Nishimura, S.; Tsunematsu, K.; Jinnai, K.; Adachi, Y.; Kimura, M. Clays and Clay Minerals, 1992, 40, 180-185. (36) Kodama, T.; Higuchi, T.; Shimizu, T.; Shimizu, K.; Komarneni, S.; Hoffbauer, W.; Schneider, H. J. Mater. Chem. 2001, 11, 2072-2077. (37) Lin, J. J.; Chen, I. J.; Chou, C. C. Macromol. Rapid Commun. 2003, 24, 492-495. (38) Lin, J. J.; Chou, C. C.; Lin, J. L. Macromol. Rapid Commun. 2004, 25, 1109-1112. (39) Chu, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J. Macromolecules 2005, 38, 6240-6243. Chapter 2 Exfoliation of Smectite Clays by Branched Polyamines Consisting of Multiple Ionic Sites (1) Feng, J.; Hu, X.; Yue, P. L. Environ. Sci. Technol. 2004, 38, 269-275. (2) Stackhouse, S.; Coveney, P. V.; Sandre, E. J. Am. Chem. Soc. 2001, 123, 11764-11774. (3) Liu, W.; Gan, J.; Papiernik, S. K.; Yates, S. R. J. Agric. Food Chem. 2000, 48, 1935-1940. (4) Schulz, J. C.; Warr, G. G. Langmuir 2000, 16, 2995-2996. (5) Lin, J. J.; Wei, J. C.; Juang, T. Y.; Tsai, W. C. Langmuir 2007, 23, 1995-1999. (6) Choy, J. H.; Kwak, S. Y.; Jeong, Y. J.; Park, J. S. Angew. Chem. Int. Ed. 2000, 39, 4041-4045. (7) Fendler, J. H. Chem. Mater. 1996, 8, 1616-1624. (8) Eckle, M.; Decher, G. Nano Lett. 2001, 1, 45-49. (9) Umemura, Y.; Yamagishi, A.; Schoonheydt, R.; Persoons, A.; Schryver, F. D. J. Am. Chem. Soc. 2002, 124, 992-997. (10) Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539-1641. (11) Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P. Chem. Mater. 1994, 6, 1017-1022. (12) Klapyta, Z.; Fujita, T.; Iyi, N. Appl. Clay Sci. 2001, 19, 5-10. (13) Yang, J. H.; Han, Y. S.; Choy, J. H.; Tateyamab, H. J. Mater. Chem. 2001, 11, 1305-1312. (14) Ijdo, W. L.; Pinnavaia, T. J. Chem. Mater. 1999, 11, 3227-3231. (15) Imai, Y.; Nishimura, S.; Abe, E.; Tateyama, H.; Abiko, A.; Yamaguchi, A.; Aoyama, T.; Taguchi, H. Chem. Mater. 2002, 14, 477-479. (16) Xie, W.; Xie, R.; Pan, W. P.; Hunter, D.; Koene, B.; Tan, L. S.; Vaia, R. Chem. Mater. 2002, 14, 4837- 4845. (17) Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807-813. (18) Sepehr, M.; Utracki, L. A.; Zheng, X.; Wilkie, C. A. Polymer 2005, 46, 11557-11568. (19) Zheng, X.; Jiang, D. D.; Wang, D.; Wilkie, C. A. Polym. Degrad. Stab. 2006, 91, 289-297. (20) Theng, B. K. G. Formation and properties of clay-polymer complexes. Elsevier: New York, 1979. (21) Olphen, H. V. Clay colloid chemistry. 2nd ed.; John Wiley & Sons: New York, 1997. (22) Pinnavaia, T. J. Science 1983, 220, 365-371. (23) Alexandre, M.; Dubois, P. Mater. Sci. Eng., R: Rep. 2000, 28, 1-63. (24) Zanetti, M.; Lomakin, S.; Camino, G. Macromol. Mater. Eng. 2000, 279, 1-9. (25) Porter, D.; Metcalfe, E.; Thomas, M. J. K. Fire Mater. 2000, 24, 45-52. (26) Fornes, T. D.; Hunter, D. L.; Paul, D. R. Macromolecules 2004, 37, 1793-1798. (27) Lin, J. J.; Chen, Y. M. Langmuir 2004, 20, 4261-4264. (28) Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai, W. C. J. Phys. Chem. B 2006, 110, 18115-18120. (29) Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T. Nano Lett. 2001, 1, 271-272. (30) Lin, J. J.; Cheng, I. J.; Wang, R. C.; Lee, R. J. Macromolecules 2001, 34, 8832-8834. (31) Chou, C. C.; Lin, J. J. Macromolecules 2005, 38, 230-233. (32) Chang, Y. C.; Chou, C. C.; Lin, J. J. Langmuir 2005, 21, 7023-7028. (33) Lin, J. J.; Hsu, Y. C.; Wei, K. L. Macromolecules 2007, 40, 1579-1584. (34) Chu, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J. Macromolecules 2005, 38, 6240-6243. Chapter 3 Self-Piling Silicate Rods and Dendrites from High Aspect-Ratio Clay Platelets (1) Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1-63. (2) Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539-1641. (3) Eckle, M.; Decher, G. Nano Lett. 2001, 1, 45-49. (4) Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Science 1999, 286, 945-947. (5) Choy, J. H.; Kwak, S. Y.; Jeong, Y. J.; Park, J. S. Angew. Chem. Int. Ed. 2000, 39, 4041-4045. (6) Cristofaro, A. D.; Violante, A. Appl. Clay Sci. 2001, 19, 59-67. (7) Edmondson, M. J.; Zhou, W.; Sieber, S. A.; Jones, I. P.; Gameson, I.; Anderson, P. A.; Edwards, P. P. Adv. Mater. 2001, 13, 1608-1611. (8) Wang, Y. W.; Zhang, L. D.; Meng, G. W.; Peng, X. S.; Jin, Y. X.; Zhang, J. J. Phys. Chem. B 2002, 106, 2502-2507. (9) Li, Y.; Bando, Y.; Golberg, D. Adv. Mater. 2003, 15, 581-585. (10) Xiong, Y.; Xie, Y.; Wu, C.; Yang, J.; Li, Z.; Xu, F. Adv. Mater. 2003, 15, 405-408. (11) Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353-389. (12) Li, M.; Schnablegger, H.; Mann, S. Nature 1999, 402, 393-395. (13) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684-1688. (14) Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372-375. (15) Clark, T. D.; Ferrigno, R.; Tien, J.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2002, 124, 5419- 5426. (16) Chopra, K. L. Thin Film Phenomena; McGraw-Hill: New York, 1969. (17) Cui, Y.; Bjork, M. T.; Liddle, J. A.; Sonnichsen, C.; Boussert, B.; Alivisatos, A. P. Nano Lett. 2004, 4, 1093-1098. (18) Mikrajuddin; Iskandar, F.; Okuyama, K. Adv. Mater. 2002, 14, 930-933. (19) Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T. Nano Lett. 2001, 1, 271-272. (20) Pinnavaia, T. J. Science 1983, 220, 365-371. (21) Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P. Chem. Mater. 1994, 6, 1017-1022. (22) Klapyta, Z.; Fujita, T.; Iyi, N. Appl. Clay Sci. 2001, 19, 5-10. (23) Ijdo, W. L.; Pinnavaia, T. J. Chem. Mater. 1999, 11, 3227-3231. (24) Imai, Y.; Nishimura, S.; Abe, E.; Tateyama, H.; Abiko, A.; Yamaguchi, A.; Aoyama, T.; Taguchi, H. Chem. Mater. 2002, 14, 477-479. (25) Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807-813. (26) Sepehr, M.; Utracki, L. A.; Zheng, X.; Wilkie, C. A. Polymer 2005, 46, 11557-11568. (27) Theng, B. K. G. Formation and properties of clay-polymer complexes; Elsevier: New York, 1979. (28) Olphen, H. V. Clay colloid chemistry; 2nd ed.; John Wiley & Sons: New York, 1997. (29) Fornes, T. D.; Hunter, D. L.; Paul, D. R. Macromolecules 2004, 37, 1793-1798. (30) Lin, J. J.; Chen, Y. M. Langmuir 2004, 20, 4261-4264. (31) Chiu, C. W.; Chu, C. C.; Cheng, W. T.; Lin, J. J. Eur. Polym. J. 2008, 44, 628-636. (32) Chiu, C. W.; Cheng, W. T.; Wang, Y. P.; Lin, J. J. Ind. Eng. Chem. Res. 2007, 46, 7384-7388. (33) Lin, J. J.; Chen, Y. M.; Tsai, W. C.; Chiu, C. W. J. Phys. Chem. C 2008, 112, 9637-9643. (34) Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai, W. C. J. Phys. Chem. B 2006, 110, 18115-18120. (35) Lide, D. R. CRC Handbook of Chemistry and Physics; 82th ed.; CRC Press, Inc.: Boca Raton, FL, 2001. Chapter 4 Fine Dispersion of Hydrophobic Silicate Platelets in Anhydride-Cured Epoxy Nanocomposites (1) Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1-63. (2) Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem. Mater. 1993, 5, 1694-1696. (3) Choi, Y. S.; Choi, M. H.; Wang, K. H.; Kim, S. O.; Kim, Y. K.; Chung, I. J. Macromolecules 2001, 34, 8978-8985. (4) Park, J. H.; Jana, S. C. Macromolecules 2003, 36, 2758-2768. (5) Koerner, H.; Hampton, E.; Dean, D.; Turgut, Z.; Drummy, L.; Mirau, P.; Vaia, R. Chem. Mater. 2005, 17, 1990-1996. (6) Fornes, T. D.; Yoon, P. J.; Hunter, D. L.; Keskkula, H.; Paul, D. R. Polymer 2002, 43, 5915-5933. (7) Fornes, T. D.; Hunter, D. L.; Paul, D. R. Macromolecules 2004, 37, 1793-1798. (8) Tyan, H. L.; Liu, Y. C.; Wei, K. H. Chem. Mater. 1999, 11, 1942-1947. (9) Tien, Y. I.; Wei, K. H. Macromolecules 2001, 34, 9045-9052. (10) Triantafyllidis, K. S.; LeBaron, P. C.; Park, I.; Pinnavaia, T. J. Chem. Mater. 2006, 18, 4393-4398. (11) Bharadwaj, R. K. Macromolecules 2001, 34, 9189-9192. (12) Bourbigot, S.; Gilman, J. W.; Wilkie, C. A. Polym. Degrad. Stab. 2004, 84, 483-492. (13) Becker, O.; Varley, R.; Simon, G. Polymer 2002, 43, 4365-4373. (14) Wang, Z.; Pinnavaia, T. J. Chem. Mater. 1998, 10, 1820-1826. (15) Wang, Z.; Pinnavaia, T. J. Chem. Mater. 1998, 10, 3769-3771. (16) Olphen, H. V. Clay Colloid Chemistry, 2nd ed.; John Wiley & Sons: New York, 1997. (17) Theng, B. K. G. The Chemistry of Clay-Organic Reactions, 2nd ed.; John Wiley & Sons: New York, 1974. (18) Lin, J. J.; Chen, Y. M. Langmuir 2004, 20, 4261-4264. (19) Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai, W. C. J. Phys. Chem. B 2006, 110, 18115-18120. (20) Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T. Nano Lett. 2001, 1, 271-272. (21) Pinnavaia, T. J. Science 1983, 220, 365-371. (22) Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539-1641. (23) Chou, C. C.; Lin, J. J. Macromolecules 2005, 38, 230-233. (24) Chu, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J. Macromolecules 2005, 38, 6240-6243. (25) Chu, C. C.; Lin, J. J.; Shiu, U. R.; Kwan, C. C. Polym. J. 2005, 37, 1-7. (26) Lee, H.; Nevill, K. Epoxy Resins, McGraw-Hill, New York, 1959. (27) Lee, H.; Nevill, K. Handbook of Epoxy Resins, McGraw-Hill, New York, 1982. (28) May, C. A. Epoxy Resins, Chemistry and Technology, Marcel Dekker, Inc, 1988. (29) Ullmann''s Encyclopedia of lndustrial Chemistry; Vol. A9, VCH: New York, 1991. (30) Chiu, C. W.; Chu, C. C.; Cheng, W. T.; Lin, J. J. Eur. Polym. J. 2008, 44, 628-636. (31) Peyser, P.; Bascom, W. D. J. Appl. Polym. Sci. 1977, 21, 2359-2373. (32) Woo, E. M.; Seferis, J. C. J. Appl. Polym. Sci. 1990, 40, 1237-1256. (33) Trappe, V.; Burchard, W.; Steinman, B. Macromolecules 1991, 24, 4738-4744. (34) Khanna, U.; Chanda, M. J. Appl. Polym. Sci. 1993, 49, 319-329. (35) Fischer, R. F. J. Polym. Sci. 1960, 44, 155-172.
摘要: 
本論文共分三個章節(Chapters 2–4)來討論,以聚醚胺衍生高分子經由離子交換反應插層合成氟化雲母,並由控制聚醚胺高分子在黏土層間的聚集型態,可以達到一步脫層的奈米級分散之結構型態。進一步將脫層雲母片上之有機分子萃取後,可以獲得單一片狀且均勻分散於水中的雲母奈米矽片。其中,此雲母矽片具有兩個特殊性質,包括高片徑比及強表面電荷,並可控制其自我排列特性。最後,經表面有機化改質之雲母矽片應用於環氧樹脂高分子複合材料。
(1) 利用聚醚胺高分子衍生脫層劑直接脫層合成層狀氟化雲母及天然蒙脫土,此高分子是由三氨基聚丙烯醚與環氧樹脂反應合成。經由鹽酸控制四級胺鹽的比例與雲母進行離子交換反應,由XRD和TEM證明,可以獲得插層型態 (15.2–60.0 Å d spacing) 和脫層型態之有機黏土。其中,造成此兩種型態之差異性為插層劑利用分子與分子間作用力可以吸附兩倍以及三倍之插層劑進入黏土層間,使親油性的高分子鏈段在黏土層間相聚集,使得層間距再次被擴大或是達到脫層的型態。最後,應用於環氧樹脂奈米複合材料可以提升其熱性質及硬度。
(2) 雲母奈米矽片可經由兩個步驟製備,包括一步脫層及有機分子萃取。此雲母奈米矽片比天然黏土更具可塑性,其基本結構中長寬的尺寸為300–1000 nm,厚度為1 nm。此片狀雲母的結構為單一片狀型態且均勻分散在水溶液中的無機黏土,由於其高的長徑比及表面電荷性質,可經由控制環境及溫度,可排列得到一個長度達5–20 μm的柱狀微米結構,且片狀結構具有很高的選擇性,此柱狀體的尺寸為300–1000 nm;最後,經由超音波的能量震碎後,可以再推疊成特殊的樹枝狀結構。
(3) 在電子級環氧樹脂封裝應用中,期望添加無機粒子可以降低其熱膨脹係數且保持其高透明度。此章節探討利用脫層的奈米矽片添加至電子級環氧樹脂系統中,分析其對熱膨脹係數的影響。首先,利用非共價鍵結以有機烷基酸酐於脫層奈米矽片表面有機化改質,由親水性改變為親油性質,並提升與環氧樹脂高分子之相容性。其環氧樹脂/奈米矽片複合材料可以大幅降低其熱膨脹係數及提升硬度,且保持高透明度。未來可應用於電子封裝上。

In this thesis, there are three parts (Chapters 2-4) describing the one-step exfoliation of synthetic fluorinated mica into nanosilicate mica platelets. The high aspect ratio platelets were polydispersed with dimensions of 300-1000 nm in width and 1 nm in thickness and with an intensive charge density in the form of ≡SiO-Na+. We observed the formation of unique rod-like microstructures by self-assembly of random mica platelets with a high aspect ratio and charged counter-ions. Furthermore, the random mica platelets were applied in epoxy/silicate platelet nanocomposites.
(1) Exfoliation through an ionic exchange reaction of layered silicate clays, including synthetic fluorinated mica (Mica) and natural montmorillonite (MMT), were achieved by using polyvalent amine salts as the intercalating agents. The requisite polyamine was synthesized from the epoxy/amine coupling reaction, involving a trifunctional poly(oxypropylene)-triamine (ca. 440 g/mol Mw) and diglycidyl ether of bisphenol-A. The polyamine was a mixture of oligomeric adducts consisting of multiple amine functionalities and a branched backbone. Partial acidification by HCl addition generated a series of amine-salts that affected the intercalation and the expansion of the silicate interlayer in the range of 15.2 Å to 60.0 Å XRD d spacing. At the specific acidified ratio (H+/amine = 1/3 equiv ratio), the polyamine salts rendered the clay's layered structure into randomization. The result was confirmed by using X-ray powder diffraction (XRD) and transmission electronic microscopy (TEM). The hybrids of polyamines and Mica or MMT were blended into epoxy resins and cured into nanocomposites, which exhibited the improvements of thermal stability and hardness.
(2) We observed the formation of unique rod-like microstructures by self-assembling of random mica platelets with a high aspect-ratio and counter-ion charged. The platelets are polydisperse with dimensions of 300-1000 nm in width and 1 nm in thickness and are prepared from the exfoliation of layered synthetic-fluorinated-mica. These platelets of polygon shape are characterized by TEM and atomic force microscopy (AFM). When finely dispersed in water followed by controlled evaporation, the randomized silicate platelets self-align into a rod-like morphology. The restructuring force is attributed to the intensive attraction of surface charges on high aspect-ratio platelets. The resulting thin platelets tend to self-align in a size-selective manner through face-to-face piling into rod-like microstructures of 3-20 μm in length and 300-1000 nm in diameter (observed by FE-SEM). The self-assembled rods, under an ultrasonic treatment, may further rearrange into fern-leaf dendrites via the process of fragmentation and re-stacking. The sequential transformation of platelet microstructures in a hierarchical manner allows a morphological manipulation for constructing patterns of regularity.
(3) Hydrophilic silicate platelets, prepared from the two-step process of exfoliation and extractive isolation of layered silicate clays, were allowed to react with an alkyl anhydride and convert into organic-platelet hybrids of hydrophobic property. The exfoliative process was developed previously to isolate the silicate platelets of different sizes, including the platelets from the naturally-occurring montmorillonite and synthetic fluorinated mica. The introduction of the hydrophobic organics through ionic exchanging with the sodium ions on the platelet surface (≡SiO−Na+) was critical for rendering the silicate platelet in powder form and compatible with epoxy resin in curing into nanocomposites. The ultimate fine-dispersion of the hydrophobic platelets in epoxy matrices was observed by using TEM, and rendered the epoxies advanced high transparency, hardness, and particularly low coefficient of thermal expansion (CTE). The sustainable physical performance is suitable for the specific electronic applications such as encapsulation for light-emitting-diode devises.
URI: http://hdl.handle.net/11455/3715
其他識別: U0005-0211200912545100
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.