Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3718
標題: 聚碳酸酯/無機物奈米複材製備與介電性質
Preparation and Dielectric Properties of Polycarbonate/Inorganic Materials Nanocomposites
作者: 張文源
Chang, Wen-Yuan
關鍵字: polycarbonate;聚碳酸酯;dielectric;nanocomposites;介電;奈米複合材料
出版社: 化學工程學系所
引用: 六、參考文獻 [1] 吳泉源, “科學人-奈米特刊”, 遠流出版社, 台北, 第10頁 (2007) [2] 蔡宗燕, “工業材料”, 2期, 工業技術研究院, 新竹, 第28頁 (1998) [3] 林建中, 周宗華, “高分子材料”, 新文京出版有限公司, 第228頁(2005) [4] Shao, W.; Wang L., Qi, K., Polymer Engineering and science, 45, 451-457 (2005) [5] Akelah, A.; Moet, A., Journal of Applied Polymer Science:Applied Polymer Symposium, 55, 153-154 (1994) [6] 馬振基, 高分子複合材料上冊, 國立編譯館, 台北, 第658-661頁(1993) [7] 馬振基, 趙玨, 高分子複合材料下冊-製程、檢測與應用, 國立編 譯館, 台北, 第122頁 (2006) [8] 陳皇鈞, “工程材料科學”, 曉園出版社, 台北, 第678-699頁, (1990) [9] 簡仁德 楊子毅; 張柳春, “材料科學與工程第二版”, 歐亞書局,台北,第507-514頁(2008) [10] Aglinet Technologies, “Dielectric test fixture operation and service manual 5 th Edition”, Agilent Laboratories, Japan, p.5-6 (2000) [11] 廖財昌, 高壓電絕緣工程, 全華科技圖書, 台北, 第3-2頁 (1998) [12] David R. Lide., “Handbook of chemistry and physics”, CRC, London, Chap. 13-12 (2001) [13] Jiang, Y. L.; Leu, C. M.; Wei, K. H., Advanced Material, 14, 426-429 (2002) [14] Wang, H. W., Chang, C. C., Hsuan, C. C., Liou, S. J., Yeh, J. M., Journal of Applied Polymer Science, 92, 2402-2410 (2004) [15] Wang, H.W.; Chang, K. C.; Chu, H.C., Polymer International, 54, 114-119 (2005) [16] Wang, H. W., Dong, R. X., Chu, C. H., Chang, K. C., Lee, W. C., Material Chemistry and Physics, 94, 42-51 (2005) [17] Wang, H. W.; Shieh, C. F.; Chang, K. C.; Chu, H. C., Journal of Applied Polymer Science, 97, 2175-2181 (2005) [18] Zhang, Y.H.; Dang, Z.M.; Fu, S. Y.; Xin J. H.; Deng, J.G; Wu, J.; Yang, S.; Li, L. F.; Yan, Q., Chemical Physics Letters, 401, 553–557 (2005) [19] Toshikatsu, Tanaka; IEEE Transaction on Dielectrics and Electrical Insulation, 12, 914-928 (2005) [20] Gouy, G., Journal of Physics 4, 457 (1910) [21] Chapman, D.L., Philosophical Magazine, 6, 475 (1913) [22] Roy, M.; Nelson, J. K.; MacCrone, R. K.; Schadler, L. S., IEEE Transaction on Dielectrics and Electrical Insulation, 12, 629-643 (2005) [23] Wang, H. W.; Dong, R. X.; Liu, C. L.; Chang, H. Y., Journal of Applied Polymer Science, 104, 318-324 (2007) [24] Lin, Jingjing; Wang, Xiaodong ,Polymer, 48, 318-329 (2007) [25] Niklasson, G.A.; Granqvist, C.G.; Hunderi, O., Applid Optical, 20, 26 (1981) [26] Choy, T. C., Effective Medium Thoery, Ch.1., Clarendon Press, Oxford (1999) [27] Nelson, J. K.; Zenger, W.; Keefe, R. J.; Schadler Feist, L. S., U.S. Patent # 7,579,397 B2 (2009) [28] Warth, H.;Seidel, A.; Eckel, T.; Wittmann, D.; Keller, B., U.S. Patent # 7,105,592 B2 (2006) [29] Raghu, H.; Bose, S.; Kulkurani, M. B. ;Mahanwar, P. A., Journal of Thermalplastic Composite Material, 20, 345–356 (2007) [30] DePolo, W. S., Baird, D. G., Polymer Composites, 30, 188–199 (2009) [31] Lee, K. M.; Han, C. D., Polymer , 44, 4573–4588 (2003) [32] Yoon, P. J., Hunter , D. L., and Paul, D. R., Polymer, 44, 5323 (2003) [33] Hsieh, A. J. May, P.; Beyer, F. L.; Madison P.; Napadensky, E., Polymer Engineering And Science, 44, 825–837 (2004) [34] I. Gonzàlez, J.I. Eguiazàbal, Nazàbal, J., Polymer Engineering and Science, 46, 864–873, (2006) [35] Carrión, F. J.; Arribas, A.; Bermúdez, M. D.,A.; Guillamon, European Polymer Journal, 44, 968–977 (2008) [36] DePolo W. S., Baird D. G., Polymer Composites, 30, 200-213 (2009) [37] Yang, F.; Nelson, G. L., Polymer Advanced Technology, 17, 320–326,(2006) [38] Devaux, J.; Godard, P.; Mercier, J. R., polymer and engineering and science, 22 ,229-233, (1982) [39] Exxon mobile chemical, Exxelor VA 1803 Data sheet, Europe, (2003) [40] Johnson, B. B.; Olafsen, K.; Stori, A., International Journal of Adhesion &Adhesives, 23, 155 (2003) [41] 葉佳炘, “聚對苯二甲酸/二氧化矽奈米複合材料之至倍與物性分析”, 國立中興大學化學工程研究所碩士論文 (2005)
摘要: 
本研究利用低黏度聚碳酸酯(PC,PC-175)和數種無機物,以熔融混煉法製備聚碳酸酯/無機物奈米複合材料,並探討此複材之介電常數及物性。所加入之無機物有: (1)三種商業化滑石粉(FT-01(Ta)、LT-102(Tb)及 KS-2002(Tc))、(2)奈米黏土包含兩種商業化有機黏土(Cloistie 15A(Ca)及Cloistie 30B(Cb))及兩種商業化奈米雲母(NMa及NMb)、(3)奈米二氧化矽包含自行改質之奈米二氧化矽、中空玻璃珠(hollow glass bead (GB))及矽藻土(diatomite earth (DE))。其中奈米二氧化矽部分,分別以3-Glycidyloxypropyl trimethoxysilane (GPS)及dimethyldistearyl ammonium chloride (DMDSAC)改質二氧化矽。在PC/滑石粉系統中,加入三種相容劑來幫助滑石粉之分散,此相容劑分別為乙烯彈性體共聚物接枝馬來酸酐(EE-g-MA)、聚烯烴接枝馬來酸酐(POE-g-MA)和苯乙烯-乙烯-丁二烯-苯乙烯接枝馬來酸酐(SEBS-g-MA)。
在PC/滑石粉複材之分析中,其介電常數隨著此三種無機物之含量增加而增加。PC之介電常數隨測試頻率增加而略微下降,而在此分析使用1MHz之介電常數作為比較。PC之介電常數為2.865。當30 wt%的滑石粉(Ta)加入PC後,介電常數增加為3.114。加入此三種相容劑於PC/滑石粉複材中,其含量均為5 wt %,其介電常數較PC/滑石粉複材降低,是由於相容劑之介電常數較低。由微差掃描熱分析(DSC)得知,PC/滑石粉複材之玻璃轉移溫度(Tg)隨著滑石粉含量的增加而下降。但加入相容劑後,Tg下降幅度較小。在DMA分析中,滑石粉(Ta)之含量為30 wt % ,在30℃之動態儲存模數較PC提升了 53 %。
在PC/奈米黏土複材之分析中,其介電常數隨著此四種黏土含量增加反而下降,其中奈米黏土Ca加入PC中下降最多,當Ca含量為7 wt % 時,介電常數下降為2.463;而當Cb含量為3 wt %時,其介電常數為2.677。經由廣角X光繞射分析(WAXD)得知,Ca在PC中之層間距為3.1 nm,大於PC/Cb複材(1.83 nm)。由DSC分析得知,PC/奈米黏土複材之Tg皆隨著黏土含量的增加而下降。而DMA分析中,PC/Cb複材(3 wt % Cb)在30℃下之動態儲存模數較PC提升25 %。
而PC/二氧化矽複材中,介電常數皆隨著奈米二氧化矽含量提升而下降,PC/GPS接枝SiO2複材(3 wt %)和PC/DMDSAC吸附SiO2複材(3 wt %)之介電常數分別為2.796和2.766,皆低於PC。而PC/中空玻璃珠複材之介電常數則隨著中空玻璃珠的含量增加而上升,當中空玻璃珠含量為5 wt %時,介電常數上升至2.959(1 MHz)。在PC/矽藻土複材之介電常數分析中,當矽藻土含量在3 wt %以下,其介電常數高於PC,並且隨著含量提高而下降,當含量提高至5 wt %時,介電常數則下降至2.771。並由DMA分析中得知,PC/GPS接枝SiO2複材(3 wt %)之動態儲存模數較PC提升了18.5 %,而PC/矽藻土複材(5 wt %)較PC提升了15.7 %。

In this study, polycarbonate (PC, PC-175) and several kinds of inorganic fillers were used to prepare PC/inorganic material nanocomposites to investigate their dielectric and physical properties. These inorganic materials include: (1) three kinds of talc (FT-01 (Ta), LT-102 (Tb), and KS-2002 (Tc)), (2) two kinds of commercial clay (Cloisite 15A and Cloisite 30B) and two kinds of commercial nano mica (NMa and NMb), (3) nano silica modified by 3-Glycidyloxypropyl trimethoxysilane (GPS) and dimethyldistearyl ammonium chloride (DMDSAC), hollow glass bead (GB) and diatomite earth (DE). For the PC/talc (Ta) nanocomposites, three compatibilizers, maleic anhydride-grafted polyethylene elastomer (EE-g-MA), maleic anhydride-grafted polyolefin elastomer (POE-g-MA) and maleic anhydride-grafted poly(styrene-ethylene-butadiene-styrene) (SEBS-g- MA), were used to enhance the dispersion of talc.
The dielectric constant of PC/talc nanocomposite (PTC) is increased with the content of these three kinds of talc. The dielectric constant of PC is decreased with increase of the testing frequency, so we use the frequency of 1 MHz here to analyze the data. The dielectric constant of PC is 2.865. When the content of talc (Ta) is 30 wt %, the dielectric constant of PTC is increased to 3.114. The three compatibilizers in the PC with 5 wt % lower the dielectric constant of PC, because these compatibilizers have lower dielectric constant than neat PC. The glass transition temperature (Tg) of PTC by DSC is decreased with the content of talc. The addition of compatibilizers in PC, the decreased range of Tg is smaller than that of PTC without compatibilizers. The storage modulus of PTC with 30 wt% talc by DMA was 53% higher than that of neat PC.
For the PC/nano clay composites, the dielectric constant is decreased with the content of four kinds of clay; meanwhile the most decreased is the PC composites with Ca. The dielectric constant of 2.463 is the PC/nano clay composites with 7 wt % Ca, and the dielectric constant of 2.677 is the PC/nano clay composites with 3 wt % Cb. By the result of XRD, the d001 spacing of PC/nano clay composites which contained Ca was 3.1 nm, and it was higher than that of the nanocomposites which contained Cb. In DSC analysis, the Tg of the composites is decreased with all kinds of clay. In the DMA analysis, we found that the storage modulus of PC/nano clay composites containing Cb was the highest, which was increased by 25% when the content of Cb was 3 wt%.
For the PC/nano SiO2 composites, the dielectric constant was decreased with the content of SiO2, while the dielectric constant of PC/hollow glass bead (GB) was increased. The dielectric constants of PC/(GPS-SiO2) and PC/(DMDSAC-SiO2) were 2.868 and 2.796 with inclusion of 3 wt % SiO2, lower than that of neat PC. When the content of DE was 5 wt % in PC, the dielectric constant of composites was decreased to 2.771. When the content of GB was 5 wt % in PC, the dielectric constant of composites was increased to 2.959. In DMA analysis, the dynamic storage moduli of PC/(GPS-SiO2) composites and PC/DE composites were more than PC by 18.5 and 15.7 %, respectively.
URI: http://hdl.handle.net/11455/3718
其他識別: U0005-0502201022140300
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.