Please use this identifier to cite or link to this item:
標題: 交替式合成策略製備精準長度之超分子型鏈延長劑及其應用於聚胺酯材料研究
作者: 郭明杰
Kuo, Ming-Chieh
關鍵字: supramolecule;超分子;self-assembly;precise chain length;extender;polyurethane;自我排列;精準長度;鏈延長劑;聚胺酯
出版社: 化學工程學系所
引用: 1.Mishra, M. K.; Yagci, Y. Handbook of Vinyl Polymers, 2nd ed.; CRC Press, 2009; p231-305. 2.Grayson, S. M.; Fréchet, J. M. J. Chem Rev 2001, 101, 3819. 3.Ober, C. K.; Cheng, S. Z. D.; Hammond, P. T.; Muthukumar, M.; Reichmanis, E.; Wooley, K. L.; Lodge, T. P. Macromolecules 2009, 42, 465. 4.Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Nature 2008, 451, 977. 5.Hentschel, W. Ber dtsch chem Ges 1884, 17, 1284. 6.Bayer, O.; Rinke, H.; Siefken, W.; Orthner, L.; Schild, H. DRP 728981, 31, 11, 1937. 7.Saunders, J. H.; Frisch, K. C. Polyurethanes: Chemistry and Technology, Part I; Interscience, New York, 1962. 8.Cooper, S. L.; Tobolsky, A. V. J Appl Polym Sci 1966, 10, 1837. 9.Oretel, G. Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties, 2nd ed; Carl Hanser Verlag: New York, 1993, p37. 10.Van Bogart, J. W. C.; Lerner, L. E.; West, J. C.; Cooper, S. L. Org Coat Plastics Chem 1979, 40, 647. 11.Wang, C. B.; Cooper, S. L. Macromolecules 1983, 16, 775. 12.Li, C.; Cooper, S. L. Polymer 1990, 31, 3. 13.Saiani, A.; Rochas, C.; Eeckhaut, G.; Daunch, W. A.; Leenslag, J.-W.; Higgins, J. S. Macromolecules 2004, 37, 1411. 14.Kojio, K.; Fukumaru, T.; Furukawa, M. Macromolecules 2004, 37, 3287. 15.Sheth, J. P.; Unal, S.; Yilgor, E.; Yilgor, I.; Beyer, F. L.; Long, T. E.; Wilkes, G. L. Polymer 2005, 46, 10180. 16.Leibler, L Macromolecules 1980, 13, 1602. 17.Miller, J. A.; Lin, S. B.; Hwang, K. K. S.; Wu, K. S.; Gibson, P. E.; Cooper, S. L. Macromolecules 1985, 18, 32 18.Kim, B. K.; Shin, Y. J.; Cho, S. M.; Jeong, H. M. J Polym Sci Part B Polym Phys 2000, 38, 2652. 19.Furukawa, M.; Komiya, M.; Yokoyama, T. Angew Makromol Chem 1996, 240, 205. 20.Yontaz, D. J.; Hsu, S. L. Macromolecules 2000, 33, 8415 21.Sheth, J. P.; Klinedinst, D. B.; Pechar, T. W.; Wilkes, G. L.; Yilgor, E.; Yilogor, I. Macromolecules 2005, 38, 10074. 22.Yang, D. Y.; Hu, C. P.; Ying, S. K. J Polym Sci Part A Polym Chem 2005, 43, 2606. 23.Harrell, L. L. Jr Macromolecules 1969, 2, 607. 24.Christenson, C. P.; Harthcock, M. A.; Meadows, M. D.; Spell, H. L.; Howard, W. L.; Creswick, M. W.; Guerra, R. E.; Turner, R. B. J Polym Sci Part B Polym Phys 1986, 24, 1401. 25.Nisten, M. C. E. J.; Gaymans, R. J. Polymer 2001, 42, 6199. 26.Schuur, M. v. d.; Feijen, J.; Gaymans, R. J. Polymer 2005, 46, 4584. 27.Shirasaka, H.; Inoue, S.-I.; Asai, K.; Okamoto, H. Macromolecules 2000, 33, 2776. 28.Versteegen, R. M.; Sijbesma, R. P.; Meijer, E. W. Macromolecules 2005, 38, 3176. 29.Versteegen, R. M.; Kleppinger, R.; Sijbesma, R. P.; Meijer, E. W. Macromolecules 2006, 39, 772. 30.Sudaryanto; Nishino, T; Asaoka, S.; Nakamae, K. Int J Adhes Adhes 2001, 21, 71. 31.Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W. MRS Bull 2000, 49. 32.Sontjens, S. H. M.; Meijer, J. T.; Kooijman, H.; Spek, A. L.; Genderen, M. H. P. v.; Sijbesma, R. P.; Meijer, E. W. Org Lett 2001, 3, 3887. 33.Jang, W.-D.; Aida, T. Macromolecules 2004, 37, 7325. 34.Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J.; Hirschberg, J. H.; Lange, R. F.; Lowe, J. K.; Meijer, E. W. Science 1997, 278, 1601. 35.Seo, S. H.; Kim, Y.-W.; Chang, J. Y. Macromolecules 2005, 38, 1525. 36.Binder, W. H.; Bernstorff, S.; Kluger, C.; Petraru, L.; Kunz, M. Adv Mater 2005, 17, 2824. 37.Yamauchi, K.; Kanomata, A.; Inoue, T.; Long, T. E. Macromolecules 2004, 37, 3519. 38.Bosman, A. W.; Sijmesma, R. P.; Meijer, E. W. Mater Today 2004, 7, 34. 39.Folry, P. J. Faraday Discuss 1974, 57, 7. 40.Estroff, L. A.; Hamilton, A. D. Chem Rev 2004, 104, 1201. 41.Dastidar, P. Chem Soc Rev 2008, 37, 2699. 42.Weng, W.; Li, Z.; Jamieson, A. M.; Rowan, S. J. Macromolecules 2009, 42, 236. 43.Staudinger, H.; Gohring, O.; Scholler, M. Ber 1914, 47, 40. 44.Ebönther, A. Jucker, E.; Rissi, E.; Rutschmann, J.; Schreier, E.; Striner, R.; Suss, R. Vogel, A. Helv Chim Acta 1959, 42, 918. 45.Poshkus, A. C.; Herweh, J. E. J Org Chem 1965, 30, 2466. 46.Martin, J. C.; Burpitt, R. D.; Gott, P. G.; Harris, M.; Meen, R. H. J Org Chem 1971, 36, 2205. 47.Bestian, H.; Gunther, D. Angew Chem Int Edit 1963, 2, 612. 48.Chen, Y.-F. Master's thesis. National Chung Hsing University, Taichung, Taiwan, 2001. 49.Wu, M.-I. Master's thesis. National Chung Hsing University, Taichung, Taiwan, 2003. 50.Yeh, C.-L. Master's thesis. National Chung Hsing University, Taichung, Taiwan, 2004. 51.Dai, S. A.; Juang, T.-Y.; Chen, C.-P.; Chang, H.-Y.; Kuo, W.-J.; Su, W.-C.; Jeng, R.-J. J Appl Polym Sci 2007, 103, 3591. 52.Kuo, M. C.; Tung, Y.-C.; Yeh, C.-L.; Chang, H. Y.; Jeng, R. J.; Dai, S. A. Macromolecules, 2008, 41, 9637. 53.Caruso, A. J.; Lee, J. L. J Org Chem 1997, 62, 1058. 54.Wei, H.-Y. Master's thesis. National Chung Hsing University, Taichung, Taiwan, 2005. 55.Imai, Y. ; Hirukawa, H. Polymer J 1973, 4, 93. 56.Dai, S. A.; Juang, T. Y.; Chen, C. P.; Chang, H. Y.; Kuo, W. J.; Su, W. C.; Jeng, R. J. J Appl Polym Sci 2007, 103, 3591. 57.Chen, C.-P.; Dai, S. A.; Chang, H.-L.; Su, W.-C.; Jeng, R.-J. J Polym Sci Part A Polym Chem 2005, 43, 682. 58.Chen, C.-P.; Dai, S. A.; Chang, H.-L.; Su, W.-C.; Wu, T.-M.; Jeng, R.-J. Polymer 2005, 46, 11849. 59.Dai, S. A.; Chen, C.-P.; Lin, C.-C.; Chang, C.-C.; Wu, T.-M.; Su, W.-C.; Chang, H.-L.; Jeng, R.-J. Macromol Mater Eng 2006, 291, 395. 60.Tsai, C.-C.; Juang, T.-Y.; Dai, S. A.; Wu, T.-M.; Su, W.-C.; Liu, Y.-L.; Jeng, R.-J. J Mater Chem 2006, 16, 2056. 61.Kuo, M.-C.; Jeng, R.-J.; Su, W.-C.; Dai, S. A. Macromolecules 2008, 41, 682. 62.Hirschberg, J. H. K.; Koevoets, R. A.; Sijbesma, R. P.; Meijer, E. W. Chem Eur J 2003, 9, 4222. 63.Chattopadhyay, D. K.; Sreedhar, B.; Raju, K. V. S. N. Polymer 2006, 47, 3814. 64.Chino, K.; Ashiura, M. Macromolecules 2001, 34, 9201. 65.Folmer, B. J. B.; Sijbesma, R. P.; Versteegen, R. M.; van der Rijt, J. A. J.; Meijer, E. W. Adv Mater 2000, 12, 874. 66.Philip, G. T.; Padmanabha, I. N.; Sultan, N. A.; Radhakrishnan, G. Eur Polym J 2002, 38, 487. 67.Lillya, C. P.; Baker, R. J.; Hutte, S.; Winnter, H. H.; Lin, Y. G.; Shi, J.; Dickinson, L. C.; Chien, J. C. W. Macromolecules 1992, 25, 2076. 68.Tam, K. C.; Jenkins, R. D.; Winnik, M. A.; Bassett, D. R. Macromolecules 1998, 31, 4149. 69.Ojelund, K.; Loontjens, T.; Steeman, P.; Palmans, A.; Maurer, F. Macromol Chem Phys 2003, 204, 52. 70.Lee, D.; Lee, S.-H.; Kim, S.; Char, K.; Park, J. H.; Bae, Y. H. J Polm Sci Part B Polym Phys 2003, 41, 2365. 71.Bartelink, C. F.; De Pooter, M.; Grunbauer, H. J. M.; Beginn, U.; Moller, M. J Polym Sci Part A Polym Chem 2000, 38, 2555. 72.Chen, C.-W.; Cheng, C.-C.; Dai, S. A. Macromolecules 2007, 40, 8139. 73.Kim, B. K.; Lee, S. Y.; Xu, M. Polymer 1996, 37, 5781. 74.Lendlein, A.; Langer, R. Science 2002, 296, 1673.
An efficient and simple iterative synthesis has been successfully developed for systematically producing supramolecular extenders with multiple hydrogen-bonding sites at room temperature under catalyst-free condition. The novel strategy provided a rapid route to prepare the repeating units of amine extenders with precise chain lengths. The method was also characterized by the high yield and the ease of purifications with little by-products.
The new dual functional building intermediate, 4-(3,3-diethyl-2,4-dioxoazetidin-1-yl)benzoyl chloride (DEDA-BC), was synthesized from readily available chemicals such as 4-isocyanatobenzoyl chloride or p-tolyl isocyanate as the starting materials. In the iterative syntheses, the highly reactive acid chloride of DEDA-BC first reacted with aniline or 4,4'-MDA to form the first generation of azetidien-2,4-dione intermediate. The latter was then reacted with 4-(aminomethyl)benzenamine at the more selective azetidine-2,4-dione group of DEDA-BC to form the first generation of amine extender with 4-(aminomethyl)benzenamine at benzyl amine side. With this alternative method, the supramolecular extenders with various chain lengths (n = 1 to n = 3) were systematically prepared without tedious purification steps such as column chromatography.
The mono- and di-amine extenders with repeating units from n = 1 to n = 3 were precisely synthesized via new iterative synthetic scheme. These prepared amine extenders had distinctive characteristics of multiple hydrogen bondings and narrow molecular-weight distributions. The molecular weights and hydrogen bonding sites of the prepared amine extenders increased at the fixed precise increments. Thus, the well-defined extenders were utilized in preparing polyurethanes for elucidating the structure-property relationships of the polyurethanes.
The prepared extenders and the corresponding intermediates had high glass transition temperatures (well over 71 oC) and remarkable thermostabilities of some with the maxima of Td at 356 oC. The amine extenders were amorphous on DSC and WAXS analysis. Gelation tests were carried out within THF to study the association ability, and it was found that high generation of amine extenders could gel THF solution rapidly via hydrogen bonding interactions. These amine extenders underwent supramolecular assembling after gelation evident from their SAX analyses.
Due to the precise chain-length extenders added, elastomeric polyurethanes prepared in this research had excellent thermostabilities of over 300 oC. The optimum molecular weights of extenders, confirmed by the mechanical tests, were 1188-g/mol for the multiple-hydrogen-bonding-terminated polyurethanes and 928-g/mol for the thermal plastic. The SAXS results revealed the morphology that there existed well-defined micro-domains in the multiple-hydrogen-bonding-terminated polyurethanes.
The study presented a new ground for producing narrow-distribution extenders with variable chain lengths and to critically assess the structure-property relationships of hard-segment chain lengths for polyurethane materials.
其他識別: U0005-0508200916551900
Appears in Collections:化學工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.