Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3724
標題: 聚碳酸酯/丙烯腈-丁二烯-苯乙烯/氣相成長碳纖維導電複合材料製備與物理性質研究
Preparation and Physical Properties of Conductive Polycarbonate/Acrylonitrile-Butadiene-Styrene /Vapor Grown Carbon Fiber Composites
作者: 黃毓慧
Huang, Yu-Huei
關鍵字: 丙烯腈-丁二烯-苯乙烯;Polycarbonate;氣相碳纖維;ABS;VGCF
出版社: 化學工程學系所
引用: 1.陳英哲,”模具內的剪切操作對於PC/ABS聚摻物射出成形品抗拉強 度的影響研究”,國立交通大學碩士論文, 2006 2.郭永盛、翁慶隆、段維新, ”複合材料”,新文京開發出版 社”, 民國93年 3.Tibbetts, G. G., Doll G. L., Gorkiewicz, D. W., Molesk, J. J. I, Perry, T. A., Dasch, C. J., Balogh, M. J., Carbon, Vol.131, n.7, p1039-1047, (1993) 4.Figueiredo, J. L. C., Bernardo, A., Dordrect, Boston: Kluwer Academic Pub., p95~117, (1990) 5.張淇芝,”基材備製對氣相成長碳纖維/管之影響”,國立成功大 學碩士論文, 2001 6.Ting, J. M., Guth, J. R., Ext. Abs. 22nd Bien. Conf. Carbon, p296, July, (1995) 7.韋進全、張先鋒、王昆林,”奈米碳管巨觀體”,五南出版社, 民國98年 8.萬年祥,”多壁奈米碳管之導電性質研究”,國立中興大學碩士論 文, 2006 9.Boyce, M. C., Arruda, E. M., Cayachandran, R., Polymer Engineering and Science, Vol.34, p716-725, (1994) 10.Tan, Z.Y., Xu, X. F., Sun, S. L., Zhou, C., Ao, Y.H., Zhang, H.X., Polymer engineering and science, p1476- 1684, (2006) 11.Greco, Roberto., Astarita, Maria Francesca., Dong, Lisong., A.Sorrentino.; Polymer Technology, Vol. 13, No. 4,p 259-274 , (1994) 12.Herpels, J. J., Mascia, L., European polymer, 26(9): 997, (1990) 13.Hanafy, G.M., Madbouly, S.A., Ougizawa, T., Inoue T.. Polymer 45, p6879, (2004). 14.Wildes, G., Keskkula, H., Paul, D.R., Polymer 40, p7089, (1999). 15.Chaudhry, B.I., Hage, E., Pessan, L.A., J. Appl. Polym. Sci., 67, p1605, (1998) 16.Inberg, J. P. F., Gaymans, R.J., Polymer 43, p2425-2434, (2002) 17.Greco, Roberto., Astarita, Maria Francesca., Dong, Lisong., Sorrentino., A.; Vol. 13, No. 4, p259-274, (1994) 18.Lee, M.P., Hiltner, A., Baer, E., Polymer 33, p685, (1992). 19.Balakrishnan, S., Neelakantan, N. R., Polymer International, Vol.45, No.4, p347-352, (1998) 20.Wu, J. S., Shen, S. C., Chang, F. C., Applied Polymer Science, Vol.36, No.8, p1379-1389, (1993) 21.大谷杉郎, 大谷朝男著, 賴耿陽譯,”碳纖維材料入門”,復漢 出版社,民國72年 22.Endo, M., Takeuchi, K., Kobori, K., Carbon, Vol 33, p873- 881, (1995) 23.Sumio, Iijima., Nature, 354:56, (1991) 24.Sumio, Iijima., Toshinari, Ichihashi., Nature, p363- 605, (1993) 25.林江珍,”奈米碳管之有機分散性改質與應用”,石油季刊, 第 41卷, 第13期, p47-59, (2005) 26.Pulickel, M. Ajayan, Nature, vol 427, p402-403, (2004) 27.Baker, R. T. K., Carbon, 27, p315-323, (1989) 28.Rodriguez, N. M., J. Mater. Res., 8, p3233-3250, (1993) 29.Rodriguez N. M., Chambers, A. R., Baker T. K., Langmuir, 11, p3862~3866, (1995) 30.Hughes, T. V., Chambers, C. R., U. S. Patent, 405480, (1889) 31.盧冠廷,”流體床觸媒式化學氣相沉積法合成奈米碳材料”,國 立成功大學碩士論文, 2004 32.Baker, R.T. K., Barber, M. A., Harris P. S., Feates F. S., Waite R. J., Journal of catalysis 26, p51-62, (1972) 33.Oberlin A., Emdo M., Koyama T., Carbon 14, p133-135, (1976) 34.Endo M., Kroto H. W., J. Phys. Chem., 96, p6941-6944, (1992) 35.Tibbetts G. G., Bernardo C. A., Gorkiewicz D. W., Alig R. L.,Carbon, 32, p569-576, (1994) 36.Rodriguez N. M., Kim M. S., Baker, R. T. K., J. Phys. Chem., 98, p1308-13111, (1994) 37.Endo, M. Chemtech., No.9.:568, (1998) 38.成會明,”奈米碳管”,五南圖書出版有限公司, 2004 39.Biro, L. P., Bernardo, C. A., Tibbetts, G. G., Lambin Ph., Kluwer academic publishers,Dordrecht/Boston/London, p51-61, (2001) 40.張孝全、李素萍、韓姿嫻、陳琬淑、李君敏,”從碳纖維至奈米 碳纖維的發展沿革及現況”,化工資訊與商情, p66-73, (2007) 41.Patton, R. D., Pittman, Jr. C. U., Wang, L., Hill, J. R., Day A., Composites:Part A33, p243-251, (2002) 42.Dresselhara, M. S., Dresselhara, G., Sugihara, K., Spain, I. L., Golderg, H. A.,chapter2, (1988) 43.Ting, J. M., Lake, M. L., Carbon, 33, 663-667, (1995) 44.Ting, J. M., Lake, M. L., Duffy, D. R., Journal of Materials Research, 10, p1478-184, (1995) 45.Tsang, S. C., Chen, Y. K., Green, M. L. H., Nature, 372, 159 , (1994) 46.Lago, R. M., Tsang, S. C., Green, M. L. H., J. Chem. Soc., Chem. Commu., 1355 , (1995) 47.Hiura, H., Ebbesen, T. W., Tanigaki, K., Adv. Mater., 7, 275, (1995) 48.Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Kelley, Bradley R., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Macias, F.R., Shon, Y.S., Lee, T. R., Colbert D. T., Smalley R. E., Science, 280, 1253, (1998) 49.Lake, Max L., Jyh-Ming., Duffy, David., J. Mater. Res., 10, N0.6. 1478, (1995) 50.黃楠儒,”氣相成長碳纖維/碳管研究”,國立成功大學碩士論 文, 1999 51.Katsumata, M., Endo M., J. Mater. Res, Vol.9, No.4, (1994) 52.Lake, Max L., Jyh-Ming, Carbon 33, No.5, 663, (1995) 53.Choi, Young Kuk, Koh, Ichi Sugimoto, Song, Sung Moo, Endo, Moribu , Materials Letters 59, p3514~3520, (2005) 54.Choi, Young Kuk., Koh, Ichi Sugimoto., Song, Sung Moo., Endo, Moribu., Composites:Part A 37, p1944-1951, (2006) 55.Koyama, Terumasa., Tanoue, Shuichi., Iemoto, Yoshiyuki., Journal of Textile Engineering , Vol.55, No.3, p73-83, (2009) 56.Huina, Guo., Asif, Rasheed., L Minus, Marilyn., Kumar, Satish., J. Mater. Sci. 43:p4363-4369, (2008) 57.Hammel, E., Tang, X., Trampert, M. T., Schmitt, Mauthner K., Eder, A., P.PÖtschke, Carbon 42, p1153-1158, (2004) 58.Sennett, M., Welsh, E., Wright, J. B., Li, W. Z., Wen, J. G., Ren, Z. F., Appl. Phys. A 76, p111-113, (2003) 59.Shofner, M. L., Rodríguez-Macías F.J., Vaidyanathan, R., Barrera, E.V., Composites: Part A 34, p1207-1217, (2003) 60.Shofner, M. L., Lozano, K., Rodríguez-Macías, F. J., Barrera, E. V., Applied Polymer Science, Vol. 89, p3081– 3090, (2003) 61.Loutfy, Raouf O., Withers, J.C., Abdelkader, M., Sennett, M., Perspectives of Fullerene Nanotechnology, p317-325, (2002) 62.Jun, Xu., John, P. Donohoe., Charles, U., Pittman, Jr., Composites: Part A 35, p693-701, (2004) 63.劉湘明,”ITO觸控面版之電阻控制模式比較”,南台科技大學碩 士論文, 2004 64.Chaoqin, Li., Yong, Zhang., Yinxi, Zhang., Journal of Applied Polymer Science, Vol. 89, p589-595, (2003) 65.Yin, Z. N., Fan, L. F., Wang, T. J., Material Letters 62, p2750-2753, (2008) 66.Paredes, J. I., Martínez-Alonso, A., Tascón, J. M. D., Carbon 39, p1575-1587, (2001) 67.Yaqin, Fu., Chunshao, Han., Qingqing, Ni., Chin. J. Chem., Vol. 27, No. 6, p1110-1116, (2009) 68.Gao, Chao., Vo, Cong Duan., Jin, Yi Zheng., Li, Wenwen., Armes Steven P. Macromolecules, 38, p8634-8648, (2005) 69.Gordeyev, S. A., Macedo, F.J., Ferreira, J.A., van Hattum, F. W. J., Bernardo, C.A., Physica B 279, p33-36, (2000) 70.魏向辰,”導電高分子與多層奈米碳管複合材料之研究”,國立 中央大學碩士論文, 2007 71.He, Da., Ekere, N. N., J. Phys.D : Appl. Phys,vol.37,1848 (2004) 72.廖敏婷,”Ag/Ni 奈米壓合材料的電性滲導與磁阻探討”,國立 中央大學碩士論文, 200
摘要: 
本研究使用兩種黏度聚碳酸酯(Polycarbonate, PC),一種為中黏度
的PC-110(P1),另一種為低黏度的PC-175(P2)與丙烯晴-丁二烯-苯乙
烯(Acrylonitrile-Butadiene-Styrene Copolymer, ABS)、氣相成長碳纖維(Vapor Grown Carbon Fiber, VGCF-S)製備PC/ABS/VGCF-S(PAVS)複合材料。
首先以熔融混煉法製備PC/ABS合膠三種比例,分別為P1A-6:4、P1A-5:5、P1A-4:6,使用DSC、DMA分析P1A-6:4比例的玻璃轉移溫度(Tg)與儲存模數,DSC測得Tg溫度分別為136.5 ℃與108.8 ℃,40℃時的儲存模數為1.22×109 Pa。SEM觀察到P1A-6:4下相容性較好,大部份ABS呈球型粒子被PC包覆,空洞少沒有縫隙產生。
VGCF-S(VS)以硫酸與硝酸(3:1 v/v)進行表面酸化(acid-modified)
改質,使VS帶酸根VGCF-S(VSC)。XRD觀察2Θ=26.3O為VS的特徵峰,VS-C則在2Θ=23.88O多一個peak。拉曼(Raman)光譜發現經由表面改質會造成VS結構受到破壞,由sp2形成sp3的結構,使D-band強度增強。TGA分析發現到VS的熱穏定性較好,大約到780℃才開始有裂解的情形,VSC約到300℃即有裂解,酸化的溫度愈高,時間愈久,熱裂解溫度就愈低。使用四點探針量測VS與VSC導電度約為10-2(S/cm),表示酸化不會對導電性質有影響。分別以溶液法與熔融混煉法製備PC/VS(PC-110/VGCF-S, P1VS與PC-175/VGCF-S, P2VS)與PC-175/酸化VGCF-S, P2VSC)複合材料,以觀察VS與VS-C在PC基材中的分散情形。在PC/VS與PC/VSC複材中,VS、VSC在PC中加入10 phr以上,導電性質可能己達到飽合,表示表面改質與含量10 phr以上對導電性質沒有太大影響。TGA分析發現以溶液法製備之P2VS複材隨著VS含量提高有提早裂解,推測聚合物分解產生自由基被碳吸收而導致裂解,而熔融混煉則沒有此情形。SEM觀察VS在PC有團聚情形,VSC則分散,但PC/VSC
試片易斷裂,可能是VS表面被酸破壞,使結構變得脆弱。導電度分
析PC約為10-15(S/cm),溶液法加入VS含量3~25 phr從10-6上升10-3
(S/cm),熔融混煉加入VS含量1~10 phr從10-16上升10-7(S/cm)與
VSC含量5、10 phr從10-16上升10-5 (S/cm)。
最後以熔融混煉法製備PC/ABS/VS與PC/VS/ABS二種複材,
第一種製備方法是P1、A、VS,三種原料一起置入塑譜儀中進行混煉,為一次混合。第二種製備方法是P1,VS先進行混煉,經過粉碎後再加入A,為二次混合。由A加入的順序不同以分析性質與對複材之影響。PC/ABS/VS的VS含量1~15 phr導電度從10-16下降到10-6(S/cm),PC/VS/ABS的VS含量5~20 phr導電度為10-16下降到10-3(S/cm),在10~15 phr PC/VS/ABS比PC/ABS/VS下降。SEM觀察二次混煉VS先與PC混煉,VS絕大多數都在PC,僅少部份因熔融混煉時混合到ABS。並發現VS含量8.5 phr時電阻率開始下降,推測可能為滲流值(percolation)。在PC/ABS/VS、PC/VS/ABS在40℃的儲存模數分別為1.31×109 Pa (VS 1 phr)上升2.40×109 Pa(VS 15 phr)與1.35×109Pa(VS 5 phr)上升2.07×109 Pa(VS 20 phr),DMA測得P1A-6:4玻璃轉移溫度則分別約為135℃與111℃,加入VS的玻璃轉移溫度未有太大變化,表示VS會增加PC/ABS的機械性質,Tg則不受影響。

The aim of this study is to prepare composites containing polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) and vapor-grown carbon fiber (VGCF-S). Two viscosity of PC were used, middle viscosity PC (P1, PC-110) and low viscosity PC (P2, PC-175).
PC/ABS blend was prepared by melt blending at three ratios, 6/4 for P1A-6:4, 5/5 for P1A-5:5, and 4/6 for P1A-4:6. The glass transition (Tg) of P1A-6:4 is 136.5 and 108.8 ℃ by differential scanning calorimeter (DSC), and its storage modulus at 40 ℃ is 1.22×109 Pa by dynamic mechanical analyzer (DMA). The observation of P1A-6:4 by field emission scanning electron microscopy (FESEM) displays that most of ABS is spherical shape covered by PC matrix, where is no void and gap.
VGCF-S (VS) was modified by concentrated sulfuric acid/concentrated nitric acid (3:1, v/v); leading to that VGCG-S had acid groups (VSC). XRD pattern of VS shows its characteristic peak at 2θ=26.3˚, and a new peak in the XRD patterns of VSC is at 2θ=23.88˚. Raman spectroscope results show that the structure of VS is destroyed by the acid modification, so the intensity of D-band is increased, indicating that some of sp2 structure is replaced by sp3 structure. The onset degradation temperature of VS and VSC are about 780 and 300 ℃ by the result of thermogravimetric analysis (TGA), respectively, suggesting VS is relative thermal stable. The conductivity (ρ) of VS and VSC is about 10-2 S/cm by the result of Four-point Probe Conductance Meter, which means that there is no change of conductivity for VGCF-S after acid modification. PC/VS and PC/VSC composites were prepared by solvent blending and melt blending, respectively, which is used to observe the dispersion of VGCF-S in PC. The conductivity of PC/VS and PC/VSC reaches the plateau as the content of VS and VSC is 10 phr, implying that there is no effect for conductivity when the content of VS and VSC is more than 10 phr and the acid modification of VGCF-S for PC. The TGA shows the onset degradation temperature of PC/VS by solution blending decrease as increasing the content of VS, is likely to be a resuit of absorption by the carbon surface of free radicals that weregenerated during polymer decomposition, while the PC/VS by melt blending remains the same onset degradation temperature. VS shows aggregation in PC, however VS-C shows the dispersed structure and its PC composites is more brittle than PC/VS. The conductivity of PC is 10-15 S/cm. The conductivity of PC/VS by solution blending is increased from 10-6 to 10-3 S/cm when VS is ranged from 3 to 25 phr. The conductivity of PC/VS by melt blending are increased from 10-16 to 10-7 S/cm when VS is ranged from 1 to 10 phr and the conductivity of PC/V-C by melt blending are increased from 10-16 to 10-5 S/cm when VS is 5 and 10 phr.
Two mixing methods were used to prepare PC (PC110), ABS and VS compsites. The first one was mixing the three components together in the barbender, this is called one-step mixing (PC/ABS/VS). The second one was pre-mixing the PC and VS in the barbender to obtain the master batch, followed by mixing of ABS with the master batch in barbender, this is called two-step mixing (PC/VS/ABS). The conductivity of PC/ABS/VS is decreased from 10-16 to 10-6 S/cm when content of VS is 1-15 phr. The conductivity of PC/VS/ABS is decreased from 10-16 to 10-3 S/cm when content of VS is 5-20 phr. The conductivity of PC/VS/ABS is lower than that of PC/ABS/VS when the VS content is 10-15 phr. Most of VS is embedded in PC matrix by the TEM image. The resistivity of composites at 8.5 phr of VS begin to decrease in the range of 5-10 phr VS, implying the effect of percolation. The storage modulus of PC/ABS/VS at 40 ℃ is increased from 1.31 × 109 Pa (1 phr of VS) to 2.40 × 109 Pa (15 phr of VS), and that of PC/VS/ABS at 40 ℃ is increased from 1.35 × 109 Pa (1 phr of VS) to 2.07 × 109 Pa (20 phr of VS). Tg of the composites with various contents of VS obtained from loss modulus remains the same, are 135 and 111 ℃. VS embedded in the PC/ABS is increased the mechanical strength, but with on effect in Tg.
URI: http://hdl.handle.net/11455/3724
其他識別: U0005-0802201016183000
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.