Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/37253
標題: 稉稻TNG67突變體對伏寄普耐性機制之研究
Tolerance mechanism of Japonica-type rice TNG67 mutant against fluazifop-P-butyl
作者: 楊依凡
Yang, Yi-Fan
關鍵字: 吸收;fluazifop-P-butyl;轉運;代謝;乙醯輔酶A羧化酵素;uptake;translocation;metabolism;ACCase
出版社: 農藝學系所
引用: 黃文達、張新軒、蔡文福。1992。伏寄普(fluazifop-butyl)對玉米之藥害與缺水及保護劑處理之關係。中華農藝 2: 57-67。 黃秀鳳、張新軒、蔡文福。2001。水稻不同品種對除草劑伏寄普之忍受性差異。中華民國雜草學會會刊 22: 61-75。 費雯綺、王喻其。2007。植物保護手冊。台中,台灣。行政院農業委員會農業藥物毒物試驗所。 劉怡伶、王慶裕。2012。碩士論文:伏寄普耐感性水稻突變體之篩選及其農藝性狀表現與對氮素需求性之差異。 蔣永正、侯秉賦、王智屏、蔣慕琰。2007。牛筋草(Eleusine indica)對ACCase抑制型除草劑抗性之探討。植物保護學會會刊 49: 311-324。 蔣永正、蔣慕琰。2006。農田雜草與除草劑要覽。台中,台灣。行政院農業委員會農業藥物毒物試驗所。 Alexieva, V. 1993. Physiological and biochemical basses of antidote action. Bulg. J. Plant Physiol. 19: 1-4. Akhtar, M., S. Afghan, T. Mahmood, and G. Abbas. 1990. Effect of pre- and post-emergence weedicides application on nodulation, growth and yield of soybean at different fertility levels. J. Agric. Res. 28: 29-37. Aksoy, O. and F. Dane. 2007. The effects of fusillade (fluazifop-P-butyl) on root and shoot growth of lentil (Lens culinaris Medik.) seedlings. JABS. 1: 9-13. Aksoy, O. and F. Dane. 2011. Ultrastructural changes in the root tip and leaf cells of Lens culinaris treated with fluazifop-P-butyl. Turk. J. Bot. 35: 389-402. Aksoy, O., F. Dane, F. E. Sanal, and T. Aktac. 2007. The effects of Fusilade (fluazifop-P-butyl) on germination, mitotic frequency and α-amylase activity of lentil (Lens culinaris Medik.) seeds. Acta. Physiol. Plant. 29: 115-120. Avav, T. 2000. Control of speargrass (Imperata cylindrical (L) Raeuschel) with glyphosate and fluazifop-butyl for soybean (Glycine max L. Merr) production in savanna zone of Nigeria. J. Sci. Food Agric. 80: 193-196. Barrett, S. C. H. 1982. Genetic variation in weeds. Biological control of weeds with plant pathogens. John Wiley, NewYork, USA. pp. 73-98. Berova, M. and Z. Zlatev. 2002. Growth and photosynthesis responses of young bean (Phaseolus vulgaris L.) plants to herbicide stress. Probable protective effect of polyamine diethylenetriamine. J. Environ. Prot. Ecol. 3: 661-667. Burton, J. D., J. W. Gronwald, R. A. Keith, D. A. Somers, B. G. Gegenbach, and D. L. Wyse. 1991. Kinetics of inhibition of acetyl-coenzyme A carboxylase by sethoxydim and haloxyfop. Pestic. Biochem. Physiol. 39: 100-109. Carr, J. E., L. G. Davies, A. H. Cobb, and K. E. Pallett. 1986. Uptake, translocation and metabolism of fluazifop-butyl in Setaria viridis. Ann. Appl. Biol. 108: 115-123. Catanzaro, C. J., J. D. Burton, and W. A. Skroch. 1993. Graminicide resistance of acetyl-CoA carboxylase from ornamental grasses. Pestic. Biochem. Physiol. 45: 147-155. Chandrasena, N. R. and G. R. Sagar. 1986. Uptake and translocation of 14C-fluazifop by quackgrass (Agropyron repens). Weed Sci. 34: 676-684. Chronopoulou, E., P. Madesis, B. Asimakopoulou, D. Platis, A. Tsaftaris, and N. E. Labrou. 2011. Catalytic and structural diversity of the fluazifop-inducible glutathione transferases from Phaseolus vulgaris. Planta DOI: 10.1007/s00425-011-1572-z. Cole, D. J. 1994. Detoxification and activation of agrochemicals in plants. Pestici. Sci. 42: 209-222. Coupland, D. 1989. Pre-treatment environmental effects on the uptake, translocation, metabolism and performance of fluazifop-butyl in Elymus repens. Weed Res. 29: 289-297. Coupland, D. and C. M. Bond. 1988. Enzymic de-esterification of fluazifop-butyl in leaf homogenates prepared from Elymus repens plants grown under contrasting environmental conditions. Proceedings EWRS Symposium “Factors Affecting Herbicidal Activity and Selectivity”. pp. 175-185. Cummins, I., D. J. Cole, and R. Edwards. 1999. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-glass. Plant J. 18: 285-292. Delye, C. 2005. Weed resistance to acetyl-coenzyme A carboxylase inhibitors: an update. Weed Sci. 53: 728-746. De Prado, R., J. Gonzalez-Gutierrez, J. Menendez, J. Gasquez, J. W. Gronwald, and R. Gimenez-Espinosa. 2000. Resistance to acetyl CoA carboxylase-inhibiting herbicides in Lolium multiflorum. Weed Sci. 48: 311-318. Derr, J. F., T. J. Monaco, and T. J. Sheets. 1985. Uptake and translocation of fluazifop by three annual grasses. Weed Sci. 33: 612-617. Devine, M. D., S. A. Maclsaac, M. L. Romano, and J. L. Hall. 1992. Investigation of the mechanism of diclofop resistance in two biotypes of Avena fatua. Pestic. Biochem. Physiol. 42: 88-96. Devine, M. D. and R. H. Shimabukuro. 1994. Resistance to acetyl-coenzyme A carboxylase inhibiting herbicides. Herbicide Resistance in Plants. Boca Raton, FL: CRC Press. pp. 141-169. Egli, M. A., B. G. Gegenbach, J. W. Gronwald, D. A. Somers, and D. L. Wyse. 1993. Characterization of maize acetyl-coenzyme A carboxylase. Plant Physiol. 101: 499-506. Focke, M., E. Gieringer, S. Schwan, L. Jansch, and H. P. Braun. 2003. Fatty acid biosynthesis in mitochondria of grasses: malonyl- coenzyme A is generated by mitochondrial-localized acetyl-coenzyme A carboxylase. Plant Physiol. 133: 875-884. Gimenez-Espinosa, R., K. L. Plaisance, D. W. Plank, J. W. Gronwald, and R. De Prado. 1999. Propaquizafop absorption, translocation, metabolism, and effect on acetyl-CoA carboxylase isoforms in chickpea (Cicer arietinum L.). Pestic. Biochem. Physiol. 65: 140-150. Gronwald, J. W. 1991. Lipid biosynthesis inhibitors. Weed Sci. 39: 435-449. Gronwald, J. W., C. V. Eberlein, K. J. Betts, R. J. Baerg, N. J. Ehlke, and D. L. Wyse. 1992. Mechanism of diclofop resistance in an Italian ryegrass (Lolium multiflorum) biotype. Pestic. Biochem. Physiol. 44: 126-139. Harwood, J. L. 1988. Fatty acid metabolism. Annu. Rev. Plant Physiol. 39: 101-138. Hatzios, K. K. and J. G. Wu. 1996. Herbicide safeners - tools for improving the efficacy and selectivity of herbicides. J. Environ. Sci. Health 31: 545-553. Heap, I. 2012. The International Survey of Herbicide-Resistant Weeds. Herbicide Resistance Action Committee (HRAC). http://www.weedscience.com. Date: 05, 2012. Heap, J. and R. Knight. 1982. A population of ryegrass tolerant to the herbicide diclofop-methyl (in South Australia). J. Aust. Inst. Agric. Sci. 48: 156-157. Hendley, P., J. W. Dick, T. J. Monaco, S. M. Slyfield, O. J. Tummon, and J. C. Barreft. 1985. Translocation and metabolism of pyridinyloxyphenoxypropionate herbicides in rhizomatous quackgrass (Agropyron repens). Weed Sci. 33: 11-24. Herber, D., L. J. Price, C. Alban, L. Dehaye, D. Job, D. J. Cole, K. E. Pallett, and J. L. Harwood. 1996. Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves. Biochem. J. 318: 997-1006. Hidayat, I. and C. Preston. 1997. Enhanced metabolism of fluazifop acid in a biotype of Digitaria sanguinalis resistant to the herbicide fluazifop-P-butyl. Pestic. Biochem. Physiol. 57: 137-146. Hidayat, I. and C. Preston. 2001. Cross-resistance to imazethapyr in a fluazifop-P-butyl-resistant population of Digitaria sanguinalis. Pest. Biochem. Physiol. 71: 190-195. Hoppe, H. H. 1980. Effect of diclofop-methyl on the growth and development of Zea mays L. seedlings. Weed Res. 20: 371-376. Jacobson, A., R. H. Shimabukuro, and C. McMichael. 1985. Response of wheat and oat seedlings to root-applied diclofop-methyl and 2, 4-dichlorophenoxyacetic acid. Pestic. Biochem. Physiol. 24: 61-67. Kells, J. J., W. F. Meggitt, and D. Penner. 1984. Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci. 32: 143-149. Kim, J. S., J. I. Oh, T. J. Kim, J. Y. Pyon, and K. Y. Cho. 2005. Physiological basis of differential phytotoxic activity between fenoxaprop-P-ethyl and cyhalofop-butyl-treated barnyardgrass. Weed Biol. Manag. 5: 39-45. Konishi, T. and Y. Sasaki. 1994. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc. Natl. Acad. Sci. USA. 91: 3598-3601. Konish, T., K. Shinohara, K. Yamada, and Y. Sasaki. 1996. Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and eukaryotic forms of this enzyme. Plant Cell Physiol. 37: 117-122. Krause, G. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: The basis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 313-349. Kuk, Y. I., J. Wu, J. F. Derr, and K. K. Hatzios. 1999. Mechanism of fenoxaprop resistance in an accession of smooth crabgrass (Digitaria ischaemum). Pestic. Biochem. Physiol. 64: 112-123. Leach, G. E., M. D. Devine, R. C. Kirkwood, and G. Marshall. 1995. Target enzyme-based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica. Pestic. Biochem. Physiol. 51: 129-136. Luo, X. Y. and H. Matsumoto. 2002. Susceptibility of a broad-leaved weed, Acanthospermum hispidum, to the grass berbicide fluazifop-butyl. Weed Biol. Manag. 2: 98-103. Luo, X. Y., H. Matsumoto, and K. Usui. 2001. Comparison of physiological effects of fluazifop-butyl and sethoxydim on oat (Avena sativa L.). Weed Biol. Manag. 1: 120-127. Luo, X. Y., Y. Sunohara, and H. Matsumoto. 2004. Fluazifop-butyl causes membrane peroxidation in the herbicide-susceptible broad leaf weed bristly starbur (Acanthospermum hispidum). Pestic. Biochem. Physiol. 78: 93-102. Ma, J., F. Lin, R. Zhang, W. Yu, and N. Lu. 2004. Differential sensitivity of two green algae, Scenedesmus quadricauda and Chlorella vulgaris, to 14 pesticide adjuvants. Ecotoxicol. Environ. Saf. 58: 61-67. Mallory-Smith, C. A. and E. J. Retzinger Jr. 2003. Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol. 17: 605-619. Maneechote, C., J. A. Holtum, C. Preston, and S. B. Powles. 1994. Resistant acetyl-CoA carboxylase is a mechanism of herbicide resistance in a biotype of Avena sterilis spp. ludoviciana. Plant Cell Physiol. 35: 627-635. Marles, M. A. S., M. D. Devine, and J. C. Hall. 1993. Herbicide resistance in Setaria viridis conferred by a less sensitive form of acetyl-coenzyme A carboxylase. Pestic. Biochem. Physiol. 46: 7-14. Matthews, J. M., J. A. M. Holtum, D. R. Liljegren, B. Furness, and S. B. Powles. 1990. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). I. Properties of the herbicide target enzymes acetyl-coenzyme A carboxylase and acetolactate synthase. Plant Physiol. 94: 1180-1186. McFadden, J. J., D. S. Frear, and E. R. Mansager. 1989. Arylhydroxylation of diclofop by a cytochrome P-450 dependent monooxygenase from wheat. Pestic. Biochem. Physiol. 34: 92-100. Nikolau, B. J., J. B. Ohlrogge, and E. S. Wurtele. 2003. Plant biotin-containing carboxylases. Arch. Biochem. Biophys. 414: 211-222. Nikolskaya, T., O. Zagnitko, G. Tevzadze, R. Haselkorn, and P. Gornicki. 1999. Herbicide sensitivity determinant of wheat plastid acetyl-CoA carboxylase is located in a 400-amino acid fragment of the carboxyltransferase domain. Proc. Natl. Acad. Sci. USA. 96: 14647-14651. Plowman, R. E., W. C. Stonebridge, and J. N. Hawtree. 1980. Fluazifop-butyl, a new selective herbicide for the control of annual and perennial grass weeds. Proceedings British Crop Protection Council-Weeds. pp. 29-37. Rendina, A. R., A. C. Craig-Kennard, J. D. Beaudion, and M. K. Breen. 1990. Inhibition of acetyl-coenzyme A carboxylase by two classes of grass-selective herbicides. J. Agric. Food Chem. 38: 1282-1287. Ruiz-Santaella, J. P., A. Heredia, and R. De Prado. 2006. Basis of selectivity of cyhalofop-butyl in Oryza sativa L. Planta 223: 191-199. Sasaki, Y. and Y. Nagano. 2004. Plant acctyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci. Biotechnol. Biochem. 68: 1175-1184. Scalla, R. 1992. Proceeding of the first international weed Control Congress, Melburne. pp. 231-235. Secor, J., C. Cseke, and J. W. Owen. 1989. The discovery of the selective inhibition of acetyl-coenzyme A carboxylase activity by two classes of graminicides. Brighton Crop Prot. Conf. Weeds 3B: 145-154. Seefeldt, S. S., J. E. Jensen, and E. P. Fuerst. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9: 218-227. Shimabukuro, R. H., W. C. Walsh, and R. A. Hoerauf. 1979. Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agric. Food Chem. 27: 615-623. Stoltenberg, D. E., J. W. Gronwald, D. L. Wyse, J. D. Burton, D. A. Somers, and B. G. Gengenbach. 1989. Effect of sethoxydim and haloxyfop in acetyl-coenzyme A carboxylase activity in Festuca species. Weed Sci. 37: 512-516. Stoltenberg, D. E. and R. J. Wiederholt. 1995. Giant foxtail (Setaria faberi) resistance to aryloxphenoxypropionate and cyclohexanedione herbicides. Weed Sci. 43: 527-535. Tal, A., S. Zarka, and B. Rubin. 1996. Fenoxaprop-P resistance in Phalaris minor conferred by an insensitive acetyl-coenzyme A carboxylase. Pest. Biochem. Physiol. 56: 134-140. Tardif, F. J., C. Preston, J. A. M. Holtum, and S. B. Powles. 1996. Resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides endowed by a single major gene encoding a resistant target site in a biotype of Lolium rigidum. Aust. J. Plant Physiol. 23: 15-23. Tiwari, J. P., S. P. Kurchania, N. R. Paradkar, and C. S. Bhalla. 1997. Varietal susceptibility and weed control efficiency of fluazifop-P-butyl in soybean (Glycin max). Indian J. of Agric. Sci. 67: 147-149. Turner, J. A. and D. J. Pernich. 2002. Origin of enantiomeric selectivity in the aryloxyphenoxypropionic acid class of herbicidal acetyl-coenzyme A carboxylase (ACCase) inhibitors. J. Agric. Food Chem. 50: 4554-4566. Volenberg, D. 2001. Characterization of Wisconsin weeds resistant to inhibitors of acetyl-coenzyme A carboxylase or acetolactate synthase. PhD Thesis, University of Wisconsin, Madison, WI, USA. Volenberg, D. and D. Stoltenberg. 2002. Altered acetyl-coenzyme A carboxylase confers resistance to clethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis. Weed Res. 42: 342-350. Walker, K. A., S. M. Ridley, T. Lewis, and J. L. Harwood. 1988. Fluazifop, a grass-selective herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species. Biochem. J. 254: 307-310. Wakil, S. J., J. K. Stoops, and V. C. Joshi. 1983. Fatty acid synthesis and its regulation. Annu. Rev. Biochem. 52: 537-579. Wiederholt, R. J. and D. E. Stoltenberg. 1995. Cross-resistance of a large crabgrass (Digitaria sanguinalis) accession to aryloxyphenoxy-propionate and cyclohexanedione herbicides. Weed Technol. 9: 518-524. Yu, Q., L. J. S. Friesen, X. Q. Zhang, and S. B. Powles. 2004. Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestic. Biochem. Physiol. 78: 21-30. Zhang, H., B. Tweel, and L. Tong. 2004. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by haloxyfop and diclofop. Proc. Natl. Acad. Sci. USA. 101: 5910-5915.
摘要: 
伏寄普(fluazifop-P-butyl)為乙醯輔酶A羧化酵素(acetyl-CoA carboxylase, ACCase; EC 6. 4. 1. 2)抑制型之選擇性禾草類除草劑(graminicides),可有效防除禾本科雜草。主由葉片吸收,經韌皮部轉移至生長點,抑制分生組織之生長。本研究目的為確認稉稻TNG67經NaN3誘變之突變體對伏寄普耐感性之差異,進一步探討其耐性機制。第一階段主要為建立水稻篩選系統,分別針對種子發芽、胚芽鞘伸長、胚根伸長及四葉期幼苗等發育時期處理不同濃度之伏寄普,劑量反應分析結果發現以幼苗期之胚根伸長對伏寄普反應最為敏感,可作為初期篩選指標。第二階段將215個稉稻突變體(M11),利用四葉期幼苗為材料經伏寄普葉面噴施後,根據傷害指數選出較具耐性之2個突變體品系SA436(T)、SA481(T)及具感性突變體品系SA495(S)、SA505(S)。進一步以耐、感性品系分蘗期葉綠素螢光分析及葉片片段傷害指數調查,篩選出耐性突變品系SA481(T)和感性SA495(S)。最後針對兩個突變品系進行除草劑之吸收、轉運、代謝及目標酵素ACCase作用之分析,發現耐、感性水稻突變品系在吸收、轉運及代謝方面皆無顯著差異,而突變品系體內ACCase比活性(specific activity) 分析受伏寄普影響之I50,兩者間雖然無明顯差異,但可發現SA481(T)略高於SA495(S),耐性指數為1.87,推測ACCase對伏寄普之耐性可能為水稻突變體耐性差異之原因。
URI: http://hdl.handle.net/11455/37253
其他識別: U0005-3007201220093000
Appears in Collections:農藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.