Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/37255
標題: 一氧化氮對水稻幼苗根鎘逆境之影響
Effect of nitric oxide on the cadmium toxicity in rice seedling roots
作者: 葉佳佳
葉佳佳, Jia-Jia Ye
關鍵字: 水稻;rice:root:nitric:oxide:cadmium;根部;一氧化氮;鎘
出版社: 農藝學系所
引用: 戶刈義次。1963。作物學試驗法。東京農業技術學會印製。第159–176頁。 蔣佩珊。2011。氯化鎘對水稻幼苗根生理作用影響之研究。國立中興大學農藝學 系碩士論文。 Ahmad, P., M. Sarwat, and S. Sharma. 2008. Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology 51: 167–173. Anbar M. 1995. Nitric oxide: a synchronizing chemical messenger. Cellular and Molecular Life Sciences 51: 545–550. Apel, K., and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373–399. Arora, A., R. K. Sairam, and G. C. Srivastava. 2002. Oxidative stress and antioxidative system in plants. Current Science 82: 1227–1238. Asada, K. 1999. The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50: 601–639. Asada K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology 141: 391–396. Avanzi, M. 1950. Observazioni sull’ attivita citologica di alcuni composti chimic. Caryologia 3: 234–248. Bartha, B., Z. Kolbert, and L. Erdei. 2005. Nitric oxide production induced by heavy Metal in Brassica juncea L. Czern. and Pisum sativum L. Acta Boplogica Szegediensis 49: 9–12. Baudouin, E. 2011. The language of nitric oxide signaling. Plant Biology 13: 233–242. Bazzaz, F. A., G. L. Rolfe, and R. W. Carlson. 1974. Effect of cadmium on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiologia Plantarum 31: 373–377. Beeor-Tzahar, T., G. Ben-Hayyim, D. Holland, Z. Faltin, and Y. Eshdat. 1995. A stress-associated citrus protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase. Federation of European Biochemical Societies Letters 366: 151–155. Beligni, M. V., A. Fath, P. C. Bethke, L. Lamattina, and R. L. Jones. 2002. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiology 129: 1642–1650. Beligni, M. V., and L. Lamattina. 1999a. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208: 337–344. Beligni, M. V., and L. Lamattina. 1999b. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide 3: 199–208. Beligni, M. V., and L. Lamattina. 1999c. Is nitric oxide toxic or protective? Trends in Plant Science 4: 299–300. Beligni, M. V., and L. Lamattina. 2000. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210: 215–221. Beligni, M. V., and L. Lamattina. 2001. Nitric oxide: a non-traditional regulator of plant growth. Trends in Plant Science 6: 508–509. Bethke, P. C., I. G. L. Libourel, N. Aoyama, Y. Chung, D. W. Still, and R. L. Jones. 2007. The Arabidopsis thaliana aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiology 143: 1173–1188. Bethke, P. C., I. G. L. Libourel, and R. L. Jones. 2006. Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany 57:517–526. Bethke, P. C., M. R. Badger, and R. L. Jones. 2004. Apoplastic synthesis of nitric oxide by plant tissues. The Plant Cell 16: 332–341. Blough, N. V., and D. C. Zafiriou. 1985. Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline solution. Inorgunic Chemisrry 24: 3504–3505. Boardman, N. K. 1977. Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology 28: 355-377. Boerjan, .W, J. Ralph, and M. Baucher. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54: 519–546. Böhm, F. M. L. Z., M. L. L. Ferrarese, D. I. L. Zanardo, J. R. Magalhaes, and O. Ferrarese-Filho. 2010. Nitric oxide affecting root growth, lignification and related enzymes in soybean seedlings. Acta Physiologiae Plantarum 32:1039–1046. Boveris, A. D., A. Galatro, and S. Puntarulo. 2000. Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals. Biological Research 33: 159–165. Bowler, C., L. Slooten, S. Vandenbranden, R. De Rycke, J. Botterman, C. Sybesma, M. Van Montagu, and D. Inzé. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. 1991. The European Molecular Biology Organization 7: 1723–1732. Bowler, C., M. V. Montagu, and D. Inzé. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43: 83-116. Bright, J., R. Desikan, J. T. Hancock, I. S. Weir, and S. J. Neill. 2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. The Plant Journal 45: 113–122. Burney, S., J. L. Caulfield, J. C. Niles, J. S. Wishnok, and S. R. Tannenbaum. 1999. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutation Research 424: 37–49. Caro, A., and S. Puntarulo. 1998. Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Physiologia Plantarum 104: 357–364. Chaoui, A., S. Mazhoudi, M. H. Ghorbal, and E. E. Ferjani. 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science127: 139–47. Chen, S.Y. 1991. Risk of membrane fat peroxidation to plant cells. Chinese Bulletin Plant Physiology 27: 82–90. Chen, Y. X., Y. F. He, Y. M. Luo, Y. L. Yu, Q. Lin, and M. H. Wong. 2003. Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50: 789–793. Cho, U., and N. Seo. 2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science 168: 113–120. Chou, T. S., Y. Y. Chao, and C. H. Kao. 2012. Involvement of hydrogen peroxide in Heat shock- and cadmium-induced expression of ascorbate peroxidase and Glutathione reductase in leaves of rice seedlings. Journal of Plant Physiology 169: 478–486. Clark, .D, J. Durner, D. A. Navarre, and D. F. Klessig. 2000. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Molecular Plant-Microbe Interactions 13: 1380–1384. Clarkson, D. T., and U. Lüttge. 1989. Divalent cations, transport and compartmentation. Progress in Botany 51: 93–112. Dalurzo, H. C., L. M. Sandalio, M. Gomez, and L. A. Del Rio. 1997. Cadmium infiltration of detached pea leaves: effect on its activated oxygen metabolism. Phyton Annales Rei Botanicae 37: 59–64. Das, P., S. Samantaray, and G. R. Rout. 1997. Studies on cadmium toxicity in plant: a review. Environmental Pollution 98: 29–36. Dean, J. V., and J. E. Harper. 1986. Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiology 82: 718–723. Demirevska-Kepova, K., L. Simova-Stoilova, Z. P. Stoyanova, and U. Feller. 2006. Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. Journal of Plant Nutrition 29: 451–468. De Pinto, M. C., F. Tommasi, and L. De Gara. 2002. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiology 130: 698–708. Desikan, R., R. Graffiths, J. Hancock, and S. Neill. 2002. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Science of USA 99: 16314–16318. Dixit, V., V. Pandey, and R. Shyam. 2001. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). Journal of Experimental Botany 52: 1101-1109. Duke, M. V., and M. L. Salin. 1983. Isoenzymes of cuprozinc superoxide dismutase from Pisum sativum. Phytochemistry 22: 2369–2373. Dunand, C., M. Crèvecoeur, and C. Penel. 2007. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytologist 174: 332–341. Ďurčeková , K., J. Huttová, I. Mistrík, M. Ollé, and L. Tamás. 2007. Cadmium induces premature xylogenesis in barley roots. Plant Soil 290: 61–68. Ekmekci, Y., D. Tanyolac, and B. Ayhan. 2008. Effects of cadmium on antioxidant Enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology 165: 600–611. Ercal, N., H. Gurer-Orthan, and N. Aykin-Burns. 2001. Toxic metals and oxidative stress stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry 1: 529–539. Feldman, P. L., O. W. Griffith, and D. J. Stuehr. 1993. The surprising life of nitric oxide. Chemical Engineering News 20: 26–38. Ferrer, M. A., and A. Ros-Barceló. 1999. Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans. Plant and Cell Environment 22: 891–897. Finger-Teixeira, A., M. de L. Ferrarese, A. R. Soares, D. da Silva, and O. Ferrarese-Filho. 2010. Cadmium-induced lignification restricts soybean root growth. Ecotoxicology and Environmental Safety 73: 1959–1964. Fornazier, R. F., R. R., A. P. Vitória, S. M. G. Molina, P. J. Lea, and R. A. Azevedo. 2002. Effects of cadmium on antioxidant enzyme activities in sugar cane. Biologia Plantarum 41: 91–97. Foster, J. G., and J. L. Hess. 1980. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiology 66: 482–487. Fry, S. C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annual Review of Plant Physiology 37: 165–186. Fuhrer, J. 1982. Early effects of excess cadmium uptake in Phaseolus vulgaris. Plant Cell and Environment 5: 263–270. Gabaldón, C., L. V. Gómez Ros, M. A. Pedreño, and A. Ros Barceló. 2005. Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytologist 165: 121-130. García-Mata, C., and L. Lamattina. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology 126: 1196–1204. García-Mata, C., and L. Lamattina. 2007. Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide 17: 143–151. García-Mata, C., R. Gay, S. Sokolovski, A. Hills, L. Lamattina, and M. R. Blatt. 2003. Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proceedings of the National Academy of Science of USA 100: 11116–11121. Gavnholta, B., and K. Larsen. 2002. Molecular biology of plant laccases in relation to lignin formation. Physiologia Plantarum 116: 273–280. Gechev, T., I. Gadjev, F. Van Breusegem, D. Inzé, S. Dukiandjiev, V. Toneva, and I. Minkov. 2002. Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences 59: 708–714. Grant, C. A., W. T. Buckley, L. D. Bailey, and F. Selles. 1998. Cadmium accumulation in crops. Canadian Journal of Plant Science 78: 1–17. Graziano, M., M. V. Beligni, and L. Lamattina. 2002. Nitric oxide improves internal iron availability in plants. Plant Physiology 130: 1852–1859. Grill, E., E. L. Winnacker, and M. H. Zenk. 1987. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Science of USA 8: 439–443. Grodzinsik, B., and V. S. Butt. 1976. Hydrogen peroxide production and the release of carbon dioxide during glycollate oxidation in leaf peroxisomes. Planta 128: 225-231. Gross, S. S., and M. S. Wolin. 1995. Nitric oxide: pathophysiological mechanisms. Annual Review of Physiology 57: 737–769. Guo, F. Q., M. Okamoto, and N. M. Crawford. 2003. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302: 100–103. Guo, F. Q., and N. M. Crawford. 2005. Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. The Plant Cell 17: 3436–3450. Haghiri, F. 1973. Cadmium uptake by plants. Journal of Environmental Quality 2: 93–96. Han, F., X. Shan, S. Zhang, B. Wen, G. Owens. 2006. Enhanced cadmium accumulation in maize roots—the impact of organic acids. Plant Soil 289: 355–368. Hayashi, H., L. De Bellis, A. Ciurli, M. Kondo, M. Hayashi, and M. Nishimura. 1999. A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes. Journal of Biological Chemistry 274: 12715–12721. He, Y. K., R. H. Tang, H. Yi, R. D. Stevens, C. W. Cook, S. M. Ahn, L. Jing, Z. Yang, L. Chen, F. Guo, F. Fiorani, R. B. Jackson, N. M. Crawford, and Z. M. Pei. 2004. Nitric oxide represses the Arabidopsis floral transition. Science 305: 1968–1971. Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189–198. Hell, R., and L. Bergmann. 1988. Glutathione synthetase in tobacco suspension cultures: catalytic properties and localization. Physiologia Plantarum 72: 70–76. Hell, R., and L. Bergmann. 1990. γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular location. Planta 180: 603–612. Hernandez, L. E., and D. T. Cooke. 1997. Modifications of root plasma membrane lipid composition of cadmium treated Pisum sativum. Journal of Experimental Botany 48: 1375–1381. Hideg, .E, T. Kalai, K. Hideg, and I. Vass. 1998. Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 237: 11405–11411. Hsu, Y. T., and C. H. Kao. 2004. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation 42: 227–238. Hsu, Y. T., and C. H. Kao. 2005. Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiologia Plantarum 124: 71–80. Hu, X., S. J. Neill, Z. Tang, and W. Cai. 2005. Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiology 137: 663–670. Iannone, M. F., E. P. Rosales, M. D. Groppa, and M. P. Benavides. 2010. Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. Protoplasma 245: 15–27. Jablonski, P. P., and J. W. Anderson. 1981. Light-dependent reduction of dehydroascorbate by ruptured pea chloroplasts. Plant Physiology 67: 1239–1244. Jana, S., and M. A. Choudhuri. 1982. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic Botany 12: 345–354. Järup, L., M. Berglund, C. G. Elinder, G. Nordberg, and M. Vahter. 1998. Health effects of cadmium exposure—a review of the literature and a risk estimate. Scandinavian Journal of Work, Environment and Health 24: 1–51. Jasid, S., M. Simontacchi, C. G. Bartoli, and S. Puntarulo. 2006. Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiology 142: 1246–1255. Karpinski, S., C. Escobar, B. Karpinska, G. Creissen, and P. M. Mullineaux. 1997. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. The Plant Cell 9: 627–640. Kato, M., and S. Shimizu. 1987. Chlorophyll metabolism in high plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Canadian Journal of Botany 65: 729–735. Khan, N. A., S. Singh, and R. Nazar. 2007. Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy Crop Science 193: 433–442. Kopyra, M., and E. A. Gwóždž. 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiology and Biochemistry 41: 1011–1017. Kopyra, M., and E. A. Gwóźdź. 2004. The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiologiae Plantarum 26: 459–472. Kumar, P., R. K. Tewari, and P. N. Sharma. 2008. Cadmium enhances generation of hydrogen peroxide and amplifies activities of catalase, peroxidases and superoxide dismutase in maize. Journal of Agronomy and Crop Science 194: 72–80. Kuo, M. C., and C. H. Kao. 2004. Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant, rice (Oryza sative L.) seedlings. Botanical Bulletin of Academia Sinica 45: 291–299. Kuriakose S., V., and M. N. V. Prasad. 2008. Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) moench by changing the activities of hydrolyzing enzymes. Plant Growth Regulation 54: 143–156. Kuźniak, E., and H. Urbanek. 2000. The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiologiae Plantarum 2: 195–203. Lamattina, L., C. Garcia-Mata, M. Graziano, and G. Pagnussat. 2003. Nitric Ooxide: the versatility of an extensive signal molecule. Annual Review Plant Biology 54: 109–136. Lamotte, O., C. Courtois, L. Barnavon, A. Pugin, and D. Wendehenne. 2005. Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule. Planta 221: 1–4. Lancaster, J. R. 1992. Nitric oxide in cells. American Scientist 80: 248–259. Laspina, N. V., M. D. Groppa, M. L. Tomaro, and M. P. Benavides. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science 169: 323–330. Law, M. Y,, S. A. Charles, and B. Halliwell. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochemical Journal 210: 899–903. Lazalt, A. M., M. V. Beligni, and L. Lamattina. 1997. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. European Journal of Plant Pathology 103: 643–651. Leshem, Y. Y., R. B. H. Wills, and V. V. V. Ku. 1998. Evidence for the function of the free radical gas-nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiology and Biochemistry 36: 825–833. Li, Y., H. Yin, Q. Wang, X. M. Zhao, Y. G. Du, and F. L. Li. 2009. Oligochitosan induced Brassica napus L. production of NO and H2O2 and their physiological function. Carbohydrate Polymers 4: 612–617. Libourel, I. G. L., P. M. Van Bodegom, M. D. Fricker, and R. G. Ratcliffe. 2006. Nitrite reduces cytoplasmic acidosis under anoxia. Plant Physiology 142: 1710–1717. Lin, C. C., and C. H. Kao. 2001. Abscisic acid induced changes in cell wall peroxidase activity and hydrogenperoxide level in roots of rice seedlings. Plant Science 160: 323–329. Lloyd-Jones, D. M., and K. D. Bloch. 1996. The vascular biology of nitric oxide and its role in atherogenesis. Annual Reviews of Medicine 47: 365–375. Lozano-Rodríguez E., L. E. Hernández, P. Bonay, and R. O. Carpena-Ruiz. 1997. Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. Journal of Experimental Botany 48: 123–128. Ma, B., J. Wan, and Z. Shen. 2007. H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum. Plant Growth Regulation 52: 91–100. MacAdam, J. W., C. J. Nelson, and R. E. Sharp. 1992. Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology 99: 872–878. Mackerness, S . A. H., C. F. John, B. Jordan, and B. Thomas. 2001. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. Federation of European Biochemical Societies Letters 489: 237–242. Madhusudhan, R., T. Ishikawa, Y. Sawa, S. Shigeoka, and H. Shibata. 2003. Characterization of an ascorbate peroxidase in plastids of tobacco BY-2 cells. Physiologia Plantarum 117: 550–557. Maksymiec, W. 2007. Signaling responses in plants to heavy metal stress. Acta Physiologia Plantarum 29: 177–187. Mata, G. C., and L. Lamattina. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology 126: 1196–1204. May, M. J., T. Vernoux, C. Leaver, M. Van Montagu, and D. Inzé. 1998. Glutathione homeostasis in plants: implications for environmental sensing and plant development. Journal of Experimental Botany 49: 649–667. Mihailovic, N., and G. Drazic. 2011. Incomplete alleviation of nickel toxicity in bean by nitric oxide supplementation. Plant, Soil and Environment 57: 396–401. Millenaar, F. F., J. J. Benschop, A. M. Wagner, and H. Lambers. 1998. The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase. Plant Physiology 118: 599–607. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405–410. Mittova, V., M. Tal, M. Volokita, and M. Guy. 2002. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia Plantarum 115: 393–400. Moskova, I., D. Todorova, V. Alexieva, S. Ivanov, and Iskren Sergiev. 2009. Effect of exogenous hydrogen peroxide on enzymetic and nonenzynetic antioxidants in leaves of young pea plants treated with paraquat. Plant Growth Regulation 57: 193–202. Mou, Z., W. H. Fan, and X. N. Dong. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935–944. Moura, J. C. M. S., C. A. V. Bonine, J. O. F. Viana, M. C. Dornelas, and P. Mazzafera. 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology 52: 360–376. Mustafa, M.G., 1990. Biochemical basis of ozone toxicity. Free Radical Biology and Medicine 9: 245–265. Nahakapam, S., and E. Shah. 2011. Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regulation 63: 23–35. Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell and Physiology 22: 867–880. Neill, S., J. Bright, R. Desikan, J. Hancock, J. Harrison, and I. Wilson. 2008. Nitric oxide evolution and perception. Journal of Experimental Botany 59: 25–35. Neill, S. J., R. Desikan, A. Clarke, and J. T. Hancock. 2002. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiology 128: 13–16. Neill, S. J., R. Desikan, and J. T. Hancock. 2003. Nitric oxide signaling in plants. New Phytologist 159: 11–35. Neves, G. Y. S., R. Marchiosi, M. L. L. Ferrarese, R. C. Siqueira-Soares, and O. Ferrarese-Filho. 2010. Root growth inhibition and lignification induced by salt stress in soybean. Journal of Agronomy and Crop Science 196: 467–473. Noctor, G., A. C. M. Arisi, L. Jouanin, K. J. Kunert, H. Rennenberg, and C. H. Foyer. 1998. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany 49: 623–647. Nordberg, G. F. 2004. Cadmium and health in the 21st Century – historical remarks and trends for the future. Biometals 17: 485–489. Nordberg, M., and G. F. Nordberg. 2000. Toxicological aspects of metallothionein. Cellular and Molecular Biology 46: 451–463. Normanly, J., J. P. Slovin, and J. D. Cohen. 1995. Rethinking auxin biosynthesis and metabolism. Plant Physiology 107: 323–329. Oehlkers, F. 1953. Chromosome breaks influenced by chemicals. Heredity 6: 95–105. Olmos, E., J. R. Martínez-Solano, A. Piqueras, and E. Hellín. 2003. Early step in oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). Journal of Experimental Botany 54: 291–301. Olson, P. D., and J. E. Varner. 1993. Hydrogen peroxide and lignification. 4: 887–892. Ortega-Villasante, C., Z. Z. Rellán-Álvarez, F. F. Del Campo, R. O. Carpena-Ruiz, and L. E. Hernández. 2005. Cellular damage induced by cadmium and mercury in Medicago sativa. Journal of Experimental Botany 56: 2239–2251. Panchuk, I. I., R. A.Volkov, and F. Schoffl. 2002. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology 129: 838–853. Panda, P., S. Nath, T. T. Chanu, G. D. Sharma, and S. K. Panda. 2011. Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiologiae Plantarum 33: 1737–1747. Paradiso, A., R. Berardino, M. C. De Pinto, L. Sanitá Di Toppi, M. M. Storelli, F. Tommasi, and L. De Gara. 2008. Increase in ascorbate–glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell and Physiology 49: 362–374. Passardi, F., C. Penel, and C. Dunand. 2004. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science 9: 534–540. Pei, Z. M., Y. Murata, G. Benning, S. Thomine, B. Klüsener, G. J. Allen, E. Grill, and J. I. Schroeder. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731–734. Pereira1, G. J. G., S. M. G. Molina, P. J. Lea, and R. A. Azevedo. 2002. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant and Soil 239: 123–132. Pinto, A. P., A. M. Mota, A. De Varennes, and F. C. Pinto. 2004. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by Sorghum plants. Science of Total Environment 326: 239–247. Ranieri, A, A. Castagna, F. Scebba, M. Careri, I. Zagnoni, G. Predieri, M. Pagliari, and L. Sanita Di Toppi. 2005. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiology and Biochemistry 43: 45–54. Rastogi, S., and U. N. Dwivedi. 2008. Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Science 174: 264–277. Rauser, W. E. 1995. Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiology 109: 1141–1149. Rellán-Ávarez, R., C. Ortega-Villasante, A. Álvarez-Fernández, F. F. Del Campo, and L. E. Hernández. 2006. Stress responses of Zea mays to cadmium and mercury. Plant Soil 279: 41–50. Roberts, E., T. Kutchan, and P. E. Kolattukudy. 1988. Cloning and sequencing of cDNA for a highly anionic peroxidase from potato and the induction of its mRNA in suberizing potato tubers and tomato fruits. Plant Molecular Biology 11: 15–26. Rockel, P., F. Strube, A. Rockel, J. Wildt, and W. M. Kaiser. 2002. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany 53: 103–110. Rodríguez-Serrano, M., M. C. Romero-Puertas, A. Zabalza, F. J. Corpas, M. Gómez, L. A. Del Río, and L. M. Sandalio. 2006. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell and Environment 29: 1532–1544. Romero-Puertas, M. C., F. Corpas, M. Rodriguez-Serrano, M. Gómez M, L. Del Rio, and L. M. Sandalio. 2007. Differenial expression and regulation of antioxidative enzymes by Cd in pea plants. Journal of Plant Physiology 164: 1346–1357. Romero-Puertas, M. C., I. McCarthy, L. M. Sandalio, J. M. Palma, F. J. Corpas, M. Gómez, and L. A. Del Río. 1999. Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radical Research 31: S25–S32. Romero-Puertas, M. C., M. Rodríguez-Serrano, F. J. Corpas, M. Gómez, L. A. Del Río, and L. M. Sandalio. 2004. Cadmium-induced subcellular accumulation of O2•- and H2O2 in pea leaves. Plant Cell Environment 27: 1122–1134. Root, R. A., R. J. Miller, and D. E. Koeppe. 1975. Uptake of cadmium–its toxicity and effect on the iron-to zinc ratio in hydroponically grown corn. Journal of Environmental Quality 4: 473–476. Rosas, I., M. E. Carbajal, S. Gomez-Arroyo, R. Belmont, and R. Villalogos-Pietrini. 1984. Cytogenetic effects on cadmium accumulation on water hyacinth (Eichhornia crassipes). Environmental Research 33: 3386–3395. Rubbo, H., R. Radi, D. Anselmi, M. Kirk, S. Barnes, J. Butler, J. P. Eiserich, and B. A. Freeman. 2000. Nitric oxide reaction with lipid peroxyl radicals spares alpha-tocopherol during lipid peroxidation: greater oxidant protection from the pair nitric oxide/alpha-tocopherol than alpha-tocopherol/ascorbate. Journal of Biological Chemistry 275: 10812–10818. Sakihama, Y., S. Murakami, and H. Yamasaki. 2003. Involvement of nitric oxide in the mechanism for stomatal opening in Vicia faba leaves. Biologia Plantarum 46: 117–119. Salin, M. L. 1988. Toxic oxygen species and protective systems of the chloroplasts. Physiologia Plantarum 72: 681–689. Salt, D. E., R. C. Prince, I. J. Pickering, and I. Raskin. 1995. Mechanisms of cadmium mobility and accumulation in indian mustard. Plant Physiology 109: 1427-1433. Sandalio, L. M., H. C. Dalurzo, M. Gómez, M. C. Romero-Puertas, and L. A. Del Río. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany 52: 2115–2126. Sandalio, L. M., M. Rodríguez-Serrano, L. A. Del Río, and M. C. Romero-Puertas. 2009. Reactive oxygen species and signaling in cadmium toxicity. Reactive Oxygen Species in Plant Signaling 2: 175–189. Sanitá Di Toppi, L., M. Lambardi, L. Pazzagli, G. Cappugi, M. Durante, and R. Gabbrielli. 1998. Reaponse to cadmium in carrot in vitro plants and cell suspemsion cultures. Plant Science 137: 119–129. Sanitá Di Toppi, L., and R. Gabbrielli. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41: 105–130. Sasaki, M., Y. Yamamoto, and H. Matsumoto. 1996. Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots. Physiologia Plantarum 96: 193–198. Schickler, H., and H. Caspi. 1999. Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiologia Plantarum 105: 39–44. Schmidt, H. H. H. W., and U. Walter. 1994. NO at work. Cell 78: 919–925. Schützendübel, A., and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53: 1351–1365. Schützendübel, A., P. Nikolova, C. Rudolf , and A. Polle. 2002. Cadmium and H2O2-induced oxidative stress in Populus × canescens roots. Plant Physiology and Biochemistry 40: 577–584. Schützendübel, A., P. Schwanz, T. Teichmann, K. Gross, R. Langenfeld-Heyser, D. L. Godbold, and A. Polle. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiology 127: 887–898. Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyagawa, T. Takeda, Y. Yabuta, and K. Yoshimura. 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany 53: 1305–1319. Siddiqui, M. H., M. H. Al-Whaibi, and M. O. Basalah. 2011. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248: 447–455. Silverberg, B. A. 1976. Cadmium-induced ultrastructural changes in mitochondria of freshwater green algae. Phycologia 15: 155–159. Singh, H. P., D. R. Batish, G. Kaur, K. Arora, and R. K. Kohli. 2008. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany 63: 158–167. Singh, H. P., S. Kaur, D. R. Batish, V. P. Sharma, N.
摘要: 
本論文係以台中在來一號 (Oryza sativa L. cv. Taichung Native 1, TN1) 水稻幼苗為試驗材料,擬探討一氧化氮對水稻幼苗根部受氯化鎘毒害之影響。鎘明顯抑制水稻株高、根長、鮮重以及乾重,且地上部和地下部鎘累積也明顯增加;而近年來的研究發現一氧化氮 (nitric oxide, NO)可在植物生理反應參與作用,包括植物抵抗逆境。試驗裡以6小時10 μM sodium nitroprusside (SNP)前處理可減緩Cd造成的根部生長、鮮重和乾重之抑制,以及鎘造成的氧化逆境發生,從MDA (malonaldehyde)和H2O2 (hydrogen peroxide)含量可更清楚得知NO可降低鎘對水稻根部所產生的氧化逆境;並測定抗氧化酵素活性,結果顯示在6小時SNP處理明顯使根部SOD和POD活性下降但CAT活性明顯上升;但SNP前處理並不會降低水稻幼苗鎘含量累積,反而有增加之現象。顯示NO主要藉由影響抗氧化酵素來減緩水稻幼苗受鎘產生之氧化逆境,並非降低水稻鎘吸收,而是增加抗氧化能力,可恢復水稻幼苗生長。

In this thesis, rice (Oryza sativa L., cv. Taichung Native 1, TN1) seedlings were used to investigate the effect of nitric oxide (NO) on the toxicity of roots caused by cadmium. Cadmium treatment significantly inhibited plant height, root length, fresh weight and dry weight, as well as cadmium content in cadmium-treated shoots and roots increased with prolonged duration of incubation. In plants, NO is involved in many physiological responses, such as defense response to biotic and abiotic stress. In this study, 10μM SNP (NO donor) pretreatment significantly recovers cadmium inhibited root length, fresh weight and dry weight of rice root, and decrease oxidative stress induced by cadmium. It is clearly that NO decreased malonaldehyde and hydrogen peroxide content of rice roots induced by cadmium. SNP-treated roots decreased with SOD and POD activity, but increased with CAT activity. However, SNP pretreatment is not decreased in cadmium content, it is increasing. It is demonstrate that SNP-pretreated caused antioxidative enzymes activity decrease in cadmium toxicity and recover rice seedlings growth, as well as not uptake cadmium content.
URI: http://hdl.handle.net/11455/37255
其他識別: U0005-2508201214490100
Appears in Collections:農藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.