Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorYang, Chiao-Anen_US
dc.identifier.citation林國清。2005。水稻新品種臺南11號之育成。臺南區農業改良場研究彙報第45號。 陳純葳、許秀惠。2009。台灣水稻細菌性病害之發生與防治。台灣水稻保護成果及新展望研討會專刊。45-64。 曾雅君。2012。運用標誌輔助選拔堆疊白葉枯病抗性基因至水稻台稉九號品種。國立中興大學碩士論文。PP.154.台灣台中市。2012, July。 Bonas, U., and T. Lahaye. 2002. Plant disease resistance triggered by pathogen-derived molecules: Refined models of specific recognition. Curr. Opin. Microbiol. 5:44-50. Blair, M. W., A. J. Garris, A. S. Iyer, B. Chapman, S. Kresovich, and S. R. McCouch. 2003. High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theor. Appl. Genet. 107: 62-73. Blair, M. W., and S. R. McCouch. 1997. Microsatellite and sequence-tagged site markers diagnostic for the rice bacterial blight resistance gene xa5. Theor. Appl. Genet. 95:174-184. Coakley S. M., H. Scherm, and S. Chakraborty. 1999. Climate change and disease management. Annu. Rev. Phytopathol. 37:399-426. Chu, Z., B. Fu, H. Yang, C. Xu, Z. Li, A. Sanchez, Y. J. Park, J. L. Bennetzen, Q. Zhang, and S. Wang. 2006. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor. Appl. Genet. 112:455-461. Chunwongse, J., G. B. Martin, and S. D. Tanksley. 1993. Pre-germination genotypic screening using PCR amplification of half seeds. Theor. Appl. Genet. 86:694-698. Davierwala, A. P., A. P. Reddy, M. D. Lagu, P. K. Ranjekar, and V. S. Gupta. 2001. Marker assisted selection of bacterial blight resistance genes in rice. Biochem. Genet. 39:261-278. da Silva, F. G., Y. Shen, C. Dardick, S. Burdman, R. C. Yadav, A. L. de Leon, and P. C. Ronald. 2004. Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol. Plant-Microbe Interact. 17:593-601. Devadath, S. 1989. Chemical control of bacterial blight of rice. In: IRRI (ed) Bacterial blight of rice. IRRI, Manila, Philippines. pp 89-98. Dokku, P., K. M. Das, and G. J. N. Rao. 2013. Pyramiding of four resistance genes of bacterial blight in Tapaswini, an elite rice cultivar, through marker-assisted selection. Euphytica 1:1-10. Hopkins, C. M., F. F. White, S. H. Choi, A. Guo, and J. E. Leach. 1992. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 5:451-459. Frisch, M., M. Bohn, and A. E. Melchinger. 1999. Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci. 39:1295-1301. Frisch M., and A. E. Melchinger. 2005. Selection theory for marker-assisted backcrossing. Genetics 170:909-917. Horino, O., T. W. Mew, and T. Yamada. 1982. The effect of temperature on the development of bacterial leaf blight on rice. Ann. Phytopathol. Soc. Japan 48:72-75. Huang, N., E. R. Angeles, J. Domingo, G. Magpantay, S. Singh, G. Zhang, N. Kumaravadivel, J. Bennett, and G. S. Khush. 1997. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor. Appl. Genet. 95: 313-320. Iyer, A. S. and S. R. McCouch. 2004. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol. Plant Microbe Interact. 17:1348-1354. Iyer-Pascuzzi, A. S., H. Jiang, L. Huang, and S. R. McCouch. 2008. Genetic and functional characterization of the rice bacterial blight disease resistance gene xa5. Phytopathology 98:289-95. Jiang, H., Y. Feng, L. Bao, X. Li, G. Gao, Q. Zhang, J. H. Xiao, C. G. Xu, Y.Q. He. 2012. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol. Breeding 30:1679-1688. Joseph, M., S. Gopalakrishnan, R. K. Sharma, V. P. Singh, A. K. Singh, N. K. Singh, and T. Mohapatra. 2004. Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Mol. Breed. 00:1-11. Kado, C. I., and M. G. Heskett. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60:969-976 Kauffman, H. E., A. P. K. Reddy, S. P. Y. Hsieh, and S. D. Merca. 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas Oryzae. Plant Dis. Reptr. 57:537-541. Kottapalli, K. R., M. L. Narasu and K. K. Jena. 2010. Effective strategy for pyramiding three bacterial blight resistance genes into fine grain rice cultivar, Samba Mahsuri, using sequence tagged site markers. Biotechnol. Lett. 32: 989-996. Khush, G. S., D. J. Mackill, and G. S. Sidhu. 1989. Breeding rice for resistance to bacterial leaf blight. In: IRRI (eds) Bacterial blight of rice. IRRI, Manila, Philippines, pp 207-217. Lee, S. W., Han, S. W., Sririyanum, M., Park, C. J., Seo, Y. S., and Ronald, P. C. 2009. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326: 850-853. Li, Z. K., A. Sanchez, E. Angeles, S. Singh, J. Domingo, N. Huan, and G. S. Khush. 2001. Are the dominant and recessive plant disease resistance genes similar? : A case study of rice R genes and Xanthomonas oryzae pv. oryzae races. Genetics 159: 757-765. Li, M. M., L. Xu, C. W. Liu, G. L. Cao, H. H. He, and L. Z. Han. 2008. Progress of genetic research and QTL analysis for grain shape in rice. J. Agric. Sci. Technol. 10:34-42. Ma, B. J., W. M. Wang., B. Zhao, Y. L. Zhou, L. H. Zhu, and W. X. Zhai. 1999. Studies of PCR marker for the rice bacterial blight resistance gene Xa-4. Hereditas Beijing 21:9-12. McCouch S. R., M. L. Abenes, R. Angeles, G. S. Khush, and S. D. Tanksley 1992. Molecular tagging of a recessive gene, xa-5, for resistance to bacterial blight of rice. Rice Genet. Newsl. 8:143-145. Mei, D. Y., Y. J. Zhu, and Y. Y. Fan. 2012. Mapping QTL for rice milling and appearance quality traits in indica rice. Hereditas 34:1591-1598. Mew, T. W. 1987. Current status and future prospects of research on bacterial blight of rice. Annu. Rev. Phytopathol. 25:359-382 Mew, T. W., A. M. Alvarez, J. E. Leach, and J. Swings. 1993. Focus on bacterial blight of rice. Plant Dis. 77:5-12. Min, S. K. 1992. An outline of rice breeding in China. In: Rice in China (in Chinese). Agricultural Publisher of Science and Technology of China, Beijing, pp 58-67. Neeraja, C. N., R. Maghirang-Rodriguez, A. Pamplona, S. Heuer, B. C. Collard, E. M. Septiningsih, G. Vergara, D. Sanchez, K. Xu, A. M. Ismail, and D. J. Mackill. 2007. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl. Genet. 115:767-776. Nino-Liu D. O., P. C. Ronald, and A. J. Bogdanove. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7:303-324. Noda, T. and H. Kaku. 1999. Growth of Xanthomonas oryzae pv. oryzae in planta and in guttation fluid of rice. Ann. Phytopathol. Soc. Japan, 65, 9-14. Ogawa, T., T. Yamamoto, G. S. Khush, and T. W. Mew. 1991. Breeding of near-isogenic lines of rice with single genes for resistance to bacterial blight pathogen (Xanthomonas campestris pv. oryzae). Japan J. Breed. 41:523-529. Ou, S. H. 1972. Rice Diseases. Kew, Surrey: Commonwealth Mycological Institute. Perumalsamy, S., M. Bharani, M. Sudha, P. Nagarajan, L. Arul, R. Saraswathi, P. Balasubramanian, and J. Ramalingam. 2010. Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.). Plant Breed. 129:400-406. Perez, L. M., E. D. Redona, M. S. Mendioro, C. M. Vera Cruz, and H. Leung. 2008. Introgression of Xa4, Xa7 and Xa21 for resistance to bacterial blight in thermosensitive genetic male sterile rice (Oryza sativa L.) for the development of two-line hybrids. Euphytica 164:627-636. Rajpurohit, D., R. Kumar, M. Kumar, P. Paul, A. Awasthi, P. O. Basha, A. Puri, T. Jhang, K. Singh, and H. S. Dhaliwal. 2011. Pyramiding of two bacterial blight resistance and a semidwarfing gene in Type 3 Basmati using marker-assisted selection. Euphytica 178:111-126. Ribaut, J. M., C. Jiang , and D. Hoisington. 2002. Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci. 42:557-565. Ronald, P.C., Albano, B., Tabien, R., Abenes, L., Wu, K.S., McCouch, S., and Tanksley, S.D.,1992, Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol. Gen. Genet. 236:113-120. Sanchez A. C., L. L. Ilag, D. Yang, D. S. Brar, F. Ausubel, G. S. Khush, M. Yano, T. Sasaki, Z. Li, and N. Huang. 1999. Genetic and physical mapping of xa13, a recessive gene bacterial blight resistance gene in rice. Theor. Appl. Genet .98:1022-1028. Shah, B. H., X. H. Ding, L. X. Zeng, T. Akshay, Z. M. Zhang, R. Z. Zeng, and G. Q. Zhang. 2006. Pyramiding four bacterial blight resistance genes into rice cultivars in south China. Mol.Plant Breeding 4: 493-499. Sidhu, G. S., G. S. Khush, and T. W. Mew. 1978. Genetic analysis of bacterial blight resistance in seventy-four cultivars of rice, Oryza sativa L. Theor. Appl. Genet. 53:105-111. Singh, S, J. S. Sidhu, N. Huang, Y. Vikal, Z. Li, D. S. Brar, H. S. Dhaliwal, G. S. Khush. 2001. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor. Appl. Genet. 102:1011-1015. Song, W. Y., G. L. Wang, L. L. Chen, H. S. Kim, L. Y. Pi, T. Holsten, J. Gardner, B. Wang, W. X. Zhai, L. H. Zhu, C. Fauquet, and P. Ronald. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804-1806. Suh, J. P., J. U. Jeung, T. H. Noh, Y. C. Cho, S. H. Park, H. S. Park, M. S. Shin, C. K. Kim,and K. K. Jena. 2013. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice 6:1-11. Sun, X., Z. Yang, S. Wang, and Q. Zhang. 2003. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor. Appl. Genet. 106:683-687. Sundaram, R. M., M. R. Vishnupriya, S. K. Biradar, G. S. Laha, G. A. Reddy, N. S. Rani, N. P. Sarma, and R. V. Sonti. 2008. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160:411-422. Tagami, Y. and T. Mizukami 1962. Historical review of the researches on bacterial leaf blight of rice caused by Xanthomonas oryzae (Uyeda et Ishiyama) Dowson. Special report of the plant diseases and insect pests forecasting service No. 10. Plant protection Division, Ministry of Agriculture and Forestry, Tokyo, Japan. pp 112. Temnykh, S, W. D. Park, N. Ayers, S .Cartinhour, N. Hauck, L. Lipovich, Y. G. Cho, T. Ishii, S. R. McCouch. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100:697-712. Vera Cruz, C. M., J. F. Bai, I. Ona, H. Leung, R. J. Nelson, T. W. Mew, and J. E. Leach. 2000. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. PNAS. 97:13500-13505. Visscher, P. M., C. S. Haley, and R. Thompson. 1996. Marker-assisted introgression in backcross breeding programs. Genetics 144:1923-1932. Wan, X. Y., J. F. Weng, H. Q. Zhai, Jiankang Wang,C. Lei, X. Liu, T. Guo,L. Jiang, N. Su, and J. Wan. 2008. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of the key allele gw-5 of a grain-width QTL in a recombination hotspot region on rice chromosome 5. Genetics 179:2239-2252. Wang, W., Y. Zhou , G. Jiang, , B. Ma, X. Chen, , Q. Zhang, L. Zhu, W. Zhai. 2000. Fine mapping of the rice bacterial blight resistance gene Xa-4 and its co-segregation marker. Chin. Sci. Bull. 45:1779-1782. Wang, X., and J. Chory, 2006. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313: 1118-1122. Webb, K. M., I. Ona, J. Bai, K.A. Garrett, T. Mew, C. M. Vera Cruz, and J. E. Leach. 2010. A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytol. 185:568-576. Williams, C. E., B. Wang, , T. E. Holsten, , J. Scambray, , F. de Assis Goes da Silva, and P. C. Ronald. 1996. Markers for selection of the rice Xa21 disease resistance gene. Theor. Appl. Genet. 93:1119-1122. Xu, J., J. Jiang, X. Dong, J. Ali, and T. Mou. 2012. Introgression of bacterial blight (BB) resistance genes Xa7 and Xa21 into popular restorer line and their hybrids by molecular marker-assisted backcross (MABC) selection scheme. Afr. J. Biotechnol. 11:8225-8233. Yang, B., W. Zhu, L.B. Johnson, and F.F. White. 2000. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway dependent, nuclear-localized, double-stranded DNA binding protein. Proc. Natl. Acad. Sci. (USA) 97:9807-9812. Yoshimura S, A. Yoshimura, N. Iwata, S. R. McCouch, M. L. Abenes, M. R. Baraoidan, T. W. Mew, and R. J. Nelson. 1995. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed. 1:375-387. Yuan, M., Z. Chu, X. Li, C. Xu, and S. Wang. 2009. Pathogen induced expressional loss of function is the key factor in race specific bacterial resistance conferred by a recessive R gene xa13 in rice. Plant Cell Physiol. 50:47-55. Zhang J., X. Li, G. Jiang, Y. Xu, and Y. He. 2006. Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed. 125:600-605. Zhang Q., S. C. Lin, B. Y. Zhao, C. L. Wang, W. C. Yang, Y. L. Zhou, D. Y. Li, C. B. Chen, and L. H. Zhu. 1998. Identification and tagging a new gene for resistance to bacterial blight Xanthomonas orzyae pv. oryzae from O. rufipogon. Rice Genet. Newsl. 15:138-142.en_US
dc.description.abstract稻白葉枯病(bacterial blight diease)係由黃單孢稈菌(Xanthomonas oryzae pv. oryzae)感染引起,導致稻產量減少20%至50%,嚴重則無可收穫。依據gene for gene之理論,病原菌與寄主植物間關係是由單一基因控制且具專一性。若將抗性基因導入不具抗性之植株中,將可使植株表現抗病能力,然而病原菌容易隨著環境氣候變化而衍生出許多生理小種,因此單一抗性基因之育種策略易導致抗性崩解,白葉枯病可隨著抗性基因堆疊數目的增加,可有效的產生廣福抗性。臺南11 號 (TN11) 為目前臺灣栽種面積最廣的品種,具有米質優、豐產、抗倒伏及抗飛蝨等優良特性,但對白葉枯病敏感。本研究以國際水稻研究所(IRRI)育成帶有多個抗白葉枯病基因的秈稻品系IRBB62 (Xa4+Xa7+Xa21) 與IRBB66 (Xa4+xa5+Xa7+xa13+Xa21) 做為抗病基因之提供親,利用雜交、回交育種導入臺南11號,配合與抗性基因連鎖之分子標誌,進行前景選拔和背景篩選,以育成具有多個抗白葉枯病基因,並維持臺南11號的優良農藝性狀的品種。經由文獻找尋並自行開發的分子標誌,篩選每個世代的雜交後代。以病原菌XF89-b接種BC3F1結果顯示,帶有三個以上的抗性基因者,具有強的抗病性,而帶有五個抗性基因之植株有穩定的白葉枯病抗性;目前進行至回交第四代BC4F1,接種白葉枯病病原菌強致病病原菌系Xoo-F2後皆呈現抗性,且背景與輪迴親相似度愈高的植株,其外表型與米粒粒型近似臺南11號。未來經前景、背景及抗病篩選後,就可進行自交產生純質品系,育成農藝特性與輪迴親相似,且具有優良白葉枯病抗性的新臺南11號品種。zh_TW
dc.description.abstractRice bacterial blight disease, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a major disease throughout the rice cultivation area of the world. It may cause rice yield loss up to 20% to 50%. Based on the gene for gene theory, the R gene specifically recognizes the product of pathogen avirulence (avr) gene hence, the introgression of bacterial blight resistance gene to the susceptible variety will provide resistance. When using one single gene for resistance, pathogen will be forced to mutate to a new race leading to the breakdown of resistance. Tainan 11 (TN11) is the most popular rice variety in Taiwan, it has good grian quality, high yield, resistance to planthoppers, low shattering and anti-lodging. However TN11 is very susceptible to the bacterial blight disease. In this study, the IRBB62 (Xa4+Xa7+Xa21) and IRBB66 (Xa4+xa5+Xa7+xa13+Xa21) of various Xa genes were used as donor parents to improve the disease resistance of TN11 through marker-assisted backcrossing approach. In each generation, the tight linked markers (simple sequence repeats, SSR) were applied to select the resistant gene (foreground selection) and the polymorphic markers of donor and recurrent parent were used for background selection. The BC4F1 plants containing more than three Xa genes show a high resistant level and plants with five Xa genes show very stable resistance to the bacterial blight disease, and similar agronomy traits with TN11. According to this study, new rice varieties with almost identical agronomic traits as the TN11 variety and a durable resistance to the bacterial blight disease can be anticipated.en_US
dc.description.tableofcontents壹、前言 1 貳、前人研究 3 一.稻白葉枯病 3 二.稻白葉枯病分布 3 三.稻白葉枯病抗性基因 3 (一)xa5 4 (二)Xa13 4 (三)Xa21 5 (四)Xa4 5 (五)Xa7 5 四.白葉枯病抗病IRBB品系之建立 6 五.白葉枯病分子標誌輔助回交育種 7 六.基因堆疊 8 參、材料方法 10 一.抗病檢定植株品系、輪迴親與提供親 10 二.水稻雜交種子育苗與種植 10 三.水稻宿根操作流程 11 四.水稻雜交 11 五.抗病基因導入臺南11號之育種流程 12 六.水稻大量基因組DNA萃取 12 七.水稻小量基因組DNA萃取 13 九.多重聚合酶鏈反應 14 十.聚丙烯醯胺膠體製作 14 十一.聚丙烯醯胺膠體電泳 15 十二.洋菜膠體製作 15 十三.洋菜膠電泳 15 十四.溴化乙啶染色 16 十五.電泳膠體分析 16 十六.水稻染色體圖譜繪製 16 十七.抗性基因導入率與背景比率計算 17 十八.病原菌接種與病害調查 17 十九.農藝性狀調查 18 肆、結果 19 一.抗白葉枯病基因分子標誌之找尋、開發與篩選 19 (一)Xa4 19 (二)xa5 20 (三)Xa21 20 二.以多重聚合鏈酶反應篩選抗白葉枯病基因 21 三.抗白葉枯病基因導入與篩選結果 23 四.背景篩選 24 五.參試品種與雜交後代抗病性檢定 25 六.農藝性狀調查 26 伍. 討論 28 一.抗白葉枯病基因導入與篩選 28 二.背景篩選 29 三.參試品種與雜交後代抗病性檢定 31 四.農藝性狀調查 33 陸. 結論 35 柒. 參考文獻 36zh_TW
dc.subjectbacterial blight diseaseen_US
dc.subjectbackcross breedingen_US
dc.titleThe application of marker-assisted selection method in introgression of bacterial blight resistance genes into Tainan 11 (TN11) rice varietyen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:農藝學系
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.