Please use this identifier to cite or link to this item:
標題: 伏寄普抗性生物型牛筋草之分子抗性機制研究
Study on the molecular resistance mechanism of the fluazifop-resistant biotype of goosegrass [Eleusine indica (L.) Gaertn.]
作者: 林鈺荏
Lin, Yu-Ren
關鍵字: 牛筋草;fluazifop-P-butyl;乙醯輔酶A羧化酵素;抗性;分子機制;goosegrass;ACCase;resistance;molecular mechanism
出版社: 農藝學系所
引用: 行政院農業委員會農業藥物毒物試驗所。2013。農藥資訊系統。台中,臺灣。行政院農業委員會農業藥物毒物試驗所。。 黃文達、張新軒、蔡文福。1992。伏寄普(fluazifop-butyl)對玉米之藥害與缺水及保護劑處理之關係。中華農藝 2: 57-67。 黃秀鳳。2000。水稻不同品種對除草劑伏寄普忍受性之研究。博士論文。台北,臺灣。國立臺灣大學農藝學系。 費雯綺、王喻其、陳富翔、林曉民、李貽華。2013。植物保護手冊網路版。台中,臺灣。行政院農業委員會農業藥物毒物試驗所。。 楊依凡。2012。稉稻突變體對伏寄普耐性機制之研究。碩士論文。台中,臺灣。國立中興大學農藝學系。 蔣永正、侯秉賦、王智屏、蔣慕琰。2007。牛筋草(Eleusine indica)對ACCase 抑制型除草劑抗性之探討。植物保護學會會刊 49: 311-324。 蔣永正、蔣慕琰。2006。農田雜草與除草劑要覽。台中,臺灣。行政院農業委員會農業藥物毒物試驗所。 蔣永正、蔣慕琰。2008。常用除草劑之特性與應用。作物診斷與農藥安全使用技術手冊。台中,臺灣。國立中興大學農業暨自然資源學院農業推廣中心。pp. 205-226 Ajmone-Marsan, P., C. Livini, M. M. Messmer, A. E. Melchinger, and M. Motto. 1992. Cluster analysis of RFLP data from related maize inbred lines of the BSSS and LSC heterotic groups and comparison with pedigree data. Euphytica 60: 139-148. Andrew, C.. 1992. Herbicides and plant physiology. 1st ed. London, U.K., Chapman & Hall. pp. 107-125. Asare-boamah, N. K. and R. A. Fletcher. 1983. Physiological and cytological effects of BAS 9052 OH on corn (Zea mays) seedlings. Weed Sci. 31: 49-55. Baerson, S. R., D. J. Rodriguez, M. Tran,Y. Feng, N. A. Biest, and G. M. Dill. 2002. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129: 1265-1275. Balinova, A. M. and M. P. Lalova. 1992. Translocation, metabolism and residues of fluazifop‐butyl in soybean plants. Weed Res. 32: 143-147. Ball, D. A., S. M. Frost, and L. H. Bennett. 2007. ACCase-inhibitor herbicide resistance in downy brome (Bromus tectorum) in Oregon. Weed Sci. 55: 91-94. Beckie, H. J. 2007. Introduction to the symposium grass weed resistance: fighting back. Weed technol. 21: 289-289. Boger, P., K. Wakabayashi, and K. Hirai. 2002. Herbicide classes in development: mode of action, targets, genetic engineering, chemistry. Springer-verlag berlin heidelberg New York a member of bertelsmann springer science + business media gmbH. Bradley, K. W., J. Wu, K. K. Hatzios, and E. S. Hagood. 2001. The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a johnsongrass biotype. Weed Sci. 49: 477-484. Buhler, D. D., B. A. Swisher, and O. C. Bumside. 1985. Behavior of 14C-haloxyfop-methyl in intact plants and cell cultures. Weed Sci. 33: 291-299. Chen, S. Y., Y. T. Lin, C. W. Lin, W. Y. Chen, C. H. Yang, and H. M. Ku. 2010. Transferability of rice SSR markers to bamboo. Euphytica 175: 23-33. Chow, P. N. P. and D. E. LaBerge. 1978. Wild oat herbicide studies. 2. physiological and chemical changes in barley and wild oats treated with diclofop-methyl herbicide in relation to plant tolerance. J. Agr. Food Chem. 26: 1134-1137. Clay, D. V. and L. B. Hertz. 1990. Effects of repeated aopplications of fluazifop-butyl, haloxyfop and sethoxydim on Elymus repens in strawberries. Weed Res. 30: 439-448. Cocker, K. M., D. S. Northcroft, J. O. Coleman, and S. R Moss. 2001. Resistance to ACCase-inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum: mechanisms of resistance and implications for control. Pest Manag. Sci. 57: 587-597. Cummins, I., D. J. Cole, and R. Edwards. 1999. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black‐grass. Plant J. 18: 285-292. De’lye, C. 2005a. Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci. 53: 728-746. De’lye, C., X. Q. Zhang, S. Michel, A. Matejicek and S. B. Powles. 2005b. Molecular bases for sensitivity to acetyl-coenzyme a carboxylase Inhibitors in black-grass. Plant Physiol. 137: 794-806. Delye, C., X.Q. Zhang, C. Chalopin, S. Michel, and S. B. Powles. 2003. An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme a carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione Inhibitors. Plant Physiol. 132: 1716-1723. Dekker, J. and S. O. Duke. 1995. Herbicide-resistant field crops. Adv. Agron. 54: 69-116. Derr, J. F., T. J. Monaco, and T. J. Sheets. 1985. Uptake and translocation of fluazifop by three annual grasses. Weed Sci. 33: 612-617. Donald, W. W. and R. H. Shimabukuro. 1980. Selectivity of diclofop‐methyl between wheat and wild oat: growth and herbicide metabolism. Physiol. Plantarum 49: 459-464. Duke, S. O., A. L. Christy, F. D. Hess and Z. S. Holt. 1991. Herbicide-Resistant Crops. Comments from CAST 1991-1, CAST, Ames, IA. Ekmekci, Y. and S. Terzioglu. 2005. Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic. Biochem. Physiol. 83: 69-81. Erlingson, M. 1988. Fusilade-a strategy for long-term control of couch (Elymus repens). Weeds and Weed Control. 1:158-165. Gealy, D. R. and F. W. Slife. 1983. BAS 9052 effects on leaf photosynthesis and growth. Weed Sci. 31: 457-461. Gherekhloo, J., M. Osuna, and R. De Prado, 2012. Biochemical and molecular basis of resistance to ACCase‐inhibiting herbicides in Iranian Phalaris minor populations. Weed Res. 52: 367-372. Goulao, L. and C. M. Oliveira. 2001. Molecular characterisation of cultivars of AOPPle (Malus× domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica 122: 81-89. Harwood, J. L.. 1988. Fatty acid metabolism. Annu. Rev. Plant Phys. 39: 101-138. Harker, K. N. and J. H. Dekker. 1983. Patterns of translocation of several 14C-graminicides within quackgrass. Proc. North Cent. Weed Control Conf. 38: 37. Heap, I. 2013. The international survey of herbicide resistant weeds. Online. Monday, June 03, 2013. Heap, J. and R. Knight. 1982. A population of ryegrass tolerant to the herbicide diclofop-methyl. J. Aust. I. Agr. Sci. 48: 156-157. Hendley, P., J. W. Dicks, T. J. Monaco, S. M. Slyfield, O. J. Tummon, and J. C. Barrett. 1985. Translocation and metabolism of pyridinyloxyphenoxypropionate herbicides in rhizomatous quackgrass (Agropyron repens). Weed Sci. 33: 11-24. Hidayat, I. and C. Preston. 1997. Enhanced metabolism of fluazifop acid in a biotype of Digitaria sanguinalis resistant to the herbicide fluazifop-P-butyl. Pest. Biochem. Physiol. 57: 137-146. Hidayat, I. and C. Preston. 2001. Cross-resistance to imazethapyr in a fluazifop-P-butyl-resistant population of Digitaria sanguinalis. Pestic. Biochem. Physiol. 71: 190-195. Hochberg, O., M. Sibony, and B. Rubin. 2009. The response of ACCase‐resistant Phalaris paradoxa populations involves two different target site mutations. Weed Res. 49: 37-46. Hoerauf, R. A. and R. H. Shimabukuro. 1979. The response of resistant and susceptible plants to diclofop‐methyl. Weed Res. 19: 293-299. Hoppe, H. H. and H. Zacher. 1985. Inhibition of fatty acid biosynthesis in isolated bean and maize chloroplasts by herbicidal phenoxy-phenoxypropionic acid derivatives and structurally related compounds. Pestic. Biochem. Phys. 24: 298-305. Hosaka, H., H. Inaba, A. Satoh, and H. Ishikawa. 1984. Morphological and histological effects of sethoxydim on corn (Zea mays) seedlings. Weed Sci. 3: 711-721. Janjic, V., D. Milosevic, I Djalovic, and S. Tyr. 2007. Weed resistance to herbicides-mechanisms and molecular basis. Acta Agr. Serbica XII: 19-40. Jatoi, S. A., A. Kikuchi, S. S. Yi, K. W. Naing, S. Yamanaka, J. A. Watanabe, and K. N. Watanabe. 2006. Use of rice SSR markers as RAPD markers for genetic diversity analysis in Zingiberaceae. Breeding sci. 56: 107-111. Kells, J. J., W. F. Meggitt, and D. Penner. 1984. Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci. 32: 143-149. Kole, C. 2011. Wild crop relatives: genomic and breeding resources. Cereals Vol. 1. Springerverlag Berlin Heidelberg. Konishi, T. and Y. Sasaki. 1994. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. P. Natl. Acad. Sci. USA 91: 3598-3601. Kyndt, T., B. V. Droogenbroeck, A. Haegeman, I. Roldan-Ruiz, and G. Gheysen. 2006. Cross-species microsatellite amplification in Vasconcellea and related genera and their use in germplasm classification. Genome 49: 786-798. Lee, L. J. and J. Ngim. 2000. A first report of glyphosate‐resistant goosegrass (Eleusine indica (L.) Gaertn) in Malaysia. Pest. Manag. Sci. 56: 336-339. Lichtenthaler, H. K. 1984. Chloroplast biogenesis, its inhibtion and modification by new herbicide compounds. Z. Naturforsch. 39: 492-499. Liu, W., D. K. Harrison, D. Chalupska, P. Gornicki, C. C. O''Donnell, S. W. Adkins, and R. R. Williams. 2007. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc. Natl. Acad. Sci. USA 104: 3627-3632. Luo, X.-Y., Sunohara, Y., and Matsumoto, H. 2004. Fluzifop-butyl causes membrane peroxidation in the herbicidesusceptible broad leaf weed bristly starbur (Acanthospermum hispidum). Pest. Biochem. Physiol. 78: 93-102. McMullan, P. M.. 1994. The influence of temperature on barley (Hordeum vulgare L.) tolerance to diclofop‐methyl or fenoxaprop‐P‐ethyl mixtures. Weed Res. 34: 23-28. Morgante, M., M. Hanafey, and W. Powell. 2002. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet. 30: 194-200. Moss, S. R., K. M. Cocker, A. C. Brown, L. Hall, and L. M. Field. 2003. Characterisation of target‐site resistance to ACCase‐inhibiting herbicides in the weed Alopecurus myosuroides (black‐grass). Pest. Manag. Sci. 59: 190-201. Ohlrogge, J. and J. Browse. 1995. Lipid biosynthesis. Plant Cell 7: 957-970. Osuna, M. D., I. C. G. R. Goulart, R. A. Vidal, A. Kalsing, J. P. Ruiz Santaella, and R. De Prado. 2012. Resistance to ACCase inhibitors in Eleusine indica from Brazil involves a target site mutation. Planta Daninha 30: 675-681. Richardson, A. D., S. P. Duigan, and G. P. Berlyn. 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 153: 185-194. Powell, W., G. C. Machray, and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1: 215-222. Roe, R. M., J. D. Burton, and R. J. Kuhr. 1997. Herbicide activity: toxicology biochemistry and molecular biology. 1 st ed. Amsterdam, Netherlands. IOS Press. Sasaki, Y. and Y. Nagano. 2004. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci. Biotech. Biochem. 68: 1175-1184. Satti, M. A. E. 1985. The mechanism of action of fluazifop-butyl, haloxyfop-methyl, and sethoxydim herbicides on wheat (triticum aestivum l.) seedlings. Ph. D. dissertation. Tucson, Arizona, U.S.A.. Department of plant sciences the university of arizona. Secor, J. and C. Cseke. 1988. Inhibition of acetyl-CoA carboxylase activity by haloxyfop and tralkoxydim. Plant Physiol. 86: 10-12. Seefeldt, S. S., J. E. Jensen, and E. P. Fuerst. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9: 218-227. Shimabukuro, R. H. and B. L. Hoffer. 1994. Effects on transmembrane proton gradient and lipid biosynthesis in the mode of action of diclofop-methyl. Pestic. Biochem. Physiol. 48: 85-97. Swisher, B. A. and F. T. Corbin. 1982. Behavior of BAS 9052 OH in soybean (Glycine max) and johnsongrass (Sorghum halepense) plant and cell cultures. Weed Sci. 30: 640-650. Tharayil-Santhakumar, N. 2004. Mechanism of herbicide resistance in weeds. Herbicide Resistance Action Committee. Tu, M., C. Hurd, J. M. Randall, and The Nature Conservancy. 2001. Weed control methods handbook: tools & techniques for use in natural areas. Logan, Utah, U.S.A.. paper 533. Urano, K. 1982. Onecide, a new herbicide fluazifop-butyl. Jap. Pestic. Inf. 41:28-31. Volenberg, D. and D. Stoltenberg. 2002. Altered acetyl-coenzyme A carboxylase confer resistance to clethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis. Weed Res. 42: 342-350. WSSA. 1998. Weed Technol. 12: 789. Walker, K. A., S. M. Ridley, T. Lewis, and J. L. Harwood. 1988. Fluazifop, a grass-selective herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species. Biochem. J. 254: 307-310. Waldecker, M. A. and D. L. Wyse. 1984. Quackgrass (Agropyron repens) control in soybeans (Glycine max) with BAS 9052 OH, KK-80, and Ro-13-8895. Weed Sci. 32: 67-75. Wright, J. P. and R. H. Shimabukuro. 1987. Effects of diclofop and diclofop-methyl on the membrane potentials of wheat and oat coleoptiles. Plant Physiol. 85: 188-193. Yu, Q., A. Collavo, M. Q. Zheng, M. Owen, M. Sattin, and S. B. Powles. 2007. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol. 145: 547-558. Zhang, H., B. Tweel, and L. Tong. 2004. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proc. Natl. Acad. Sci. USA 101: 5910-5915. Zhou, C., Y. Yang, and A. Y. Jong. 1990. Mini-prep in ten minutes. Biotechniques 8: 172-173.
牛筋草[Eleusine indica (L.) Gaertn.]為臺灣蔬菜田、果園等旱地,在高溫季節所發生極為普遍之一年生禾本科雜草。伏寄普(fluazifop-P-butyl)為抑制乙醯輔酶A羧化酵素(acetyl-CoA carboxylase, ACCase)之選擇性萌後除草劑,可有效防除禾本科雜草。近幾年,在臺灣中、南部田區發生牛筋草抗伏寄普現象,造成防治困難。本研究以對伏寄普具抗、感性之牛筋草生物型為材料,比較其形態、生理反應以及選殖、定序比較兩者在DNA序列及羧基轉移酵素功能域(carboxyl transferase domain, CT domain)之胺基酸序列差異,探討其抗性之分子機制。抗、感性牛筋草二者的外表型自幼苗至成熟植株皆極為相似,無法分辨出差異,但由SSR分子標誌多型性分析得知,抗、感生物型基因體之間存在著11.0%的差異性。抗性生物型在伏寄普處理後7天,會恢復生長並顯著加速分蘖,由外表形態傷害指數的劑量反應(dose response)分析得知,抗性生物型(ED50=0.197 mM)與感性生物型(ED50=0.004 mM)之間的抗、感比達49倍,且抗性生物型抗性能力穩定,不受生育階段影響。另外抗性生物型葉綠素含量(1.2 mg/g FW)顯著高於感性生物型(0.1 mg/g FW);而丙二醛(malondialdehyde, MDA)含量(24.9 nmole g-1 FW)則比感性生物型低(35.2 mg/g FW),顯示抗性生物型的細胞受到伏寄普傷害較低。基因選殖和序列比對結果顯示,CT domain之DNA序列發生點突變由腺嘌呤(adenine)轉變為鳥糞嘌呤(guanine),造成位在相對於大穗看麥娘(Alopecurus myosuroides Huds.) CT domain胺基酸序列(AJ310767)的2,078位置上胺基酸,由天門冬胺酸(aspartic acid, D)變成了甘氨酸(glycine, G)。推測此一胺基酸的置換,造成蛋白三級構型大幅度的改變而產生缺口,使得除草劑無法順利與CT domain結合,為牛筋草產生抗性現象的主因。

Goosegrass, a common annual poaseas weed of vegetible fields, orchards and none-cultivated lands, they grows fast in summer time of Taiwan. Fluazifop-P-butyl, a selective post-emergence herbicide, controls the grass effectively by inhibiting the acetyl-CoA carboxylase (ACCase) which is the crucial enzyme of fatty acid biosynthesis. In recent years, many cases of goosegrass were reported to be resistant to fluazifop, and become a big problem in its control especially in the south central fields of Taiwan. In this study, fluazifop resistant and susceptible biotypes of goosegrass are AOPPlied to study the molecular mechanism of resistance by comparing the agronomic traits, pysiological reactions and sequences of ACCase gene.
Though the agronimic traits are almost identical between two biotypes, their genomes show 11.0% differences by the analysis of SSR markers. The resistant biotype could significantly regrowth with new tillers at 7 days after fluazifop treatment and the responses (ED50) of resistant and susceptible biotype seedling are 0.197 mM and 0.004 mM, respectively, and the resistance index [ED50 (R) / ED50 (S)] is about 49. The resistance index maintained through the whole growth stages susgests that the resistance is very stable. Besides, comparison of the chorophyll and malondialdehyde (MDA) contents of the resistant biotype (1.2 mg/g FW and 24.9 nmole/g FW) and the susceptible biotype (24.9 nmole/g FW and 35.2 mg/g FW) after treated with 0.5 mM fluazifop, showed that the R biotype is less damaged by fluazifop. Sequences aomparison of the CT domain s found a point mutation (A→G) leading to an amino acid changed (Asp→Gly) at the 2,078 position which may alter the three-dimensional conformation of fluazifop active site, and cause the resistance.
其他識別: U0005-0808201320211000
Appears in Collections:農藝學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.