Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/37266
標題: 利用單子葉簡單重複序列與簡單重複序列區間分子標誌分析月桃親緣關係
Application of monocot SSR and ISSR markers on the genetic diversity analysis of Alpinia species
作者: 蘇向豪
Su, Hsiang-Hao
關鍵字: 遺傳歧異度;Alpinia species;月桃屬;SSR轉移率;A. intermedia complex;PIC;SSR;ISSR;A. intermedia complex;genetic diversty;PIC;ISSR;SSR;SSR transferability
出版社: 農藝學系所
引用: 郭育妏(2006)台灣產月桃屬(薑科)植物分類與根莖經油分析之研究。國立嘉義大      學農學院林業暨自然資源研究所碩士論文。135頁。 陳義男(2008)台灣薑科植物資源調查與利用。國立臺灣大學生物資源暨農學院園     藝學系博士論文。166頁。 楊正仲(1993)台灣月桃屬植物之分類研究。國立師範大學生物研究所碩士論文。     118頁。 戴廷軒(2012)分子標誌在兩種香料植物的應用。國立中興大學農藝學系碩士論     文。78頁。 Ahmad, D., A. Kikuchi, S. A. Jatoi, M. Mimura and K. N. Watanabe. 2009. Genetic     variation of chloroplast DNA in Zingiberaceae taxa from Myanmar assessed     by PCR–restriction fragment length polymorphism analysis. Annals of     Applied Biology 155: 91-101. Abeyrathne, P. D., Lalev, A. I. and Nazar, R. N. 2002. A RAC protein-binding site in       the internal transcribed spacer 2 of pre-rRNA transcripts from     Schizosaccharomyces pombe. J. Biol. Chem. 277: 21291-21299. Allnutt, T. R., A. C. Newton , A. Premoli and A. Lara. 2003. Genetic variation in the     threatened South American conifer Pilgerodendron uviferum     (Cupressaceae), detected using RAPD markers. Bio Conserv 114:245-53. Bassam, B. J., G. Caetano-Anolles and P. M. Gresshoff. 1991. Fast and sensitive     silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. Bell, C. J. and J. R. Ecker. 1994. Assignment of 30 microsatellite loci to the linkage     map of Arabidopsis. Genomics 19: 137-144. Barbara, T., C. Palma-Silva, G. M. Paggi, F. Bered, M. F. Fay and C. Lexer. 2007.     Cross-species transfer of nuclear microsatellite markers: potential and     limitations. Molecular Ecology 16(18): 3759-3767. Buso G. S. C., P. H. Rangel and M. E. Ferreira. 1998. Analysis of genetic variability     of South American wild rice populations (Oryza glumaepatula) with     isozymes and RAPD markers. Mol. Ecol. 7:107-118. Budak, H., R. C. Shearman, I. Parmaksiz and I. Dweikat. 2004. Comparative analysis     of seeded and vegetative biotype buffalograsses based on phylogenetic     relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor. Appl. Genet.     109: 280-288. Chahidi, B., M. El-Otmani, C. Jacquemond, M. Tijane, A. El-Mousadik, I. Srairi, F.     Luro. 2008. Use of morphological and physiological characters, and     molecular markers to evaluate the genetic diversity of three clementine     cultivars. Europe PubMed Central 331(1): 1-12. Cote, C. A., Greer, C. L. and B. A. Peculis. 2002. Dynamic conformational model for     the role of ITS2 in pre-rRNA processing in yeast. RNA 8: 786-797. Chen, M. R., C. J. Hou, J. B. Lin and S. L. Ho. 2010. Genetic diversity of Panicum     maximum determined by ISSR DNA markers in Taiwan. Journal of the     Agricultural Association of Taiwan 11(4): 356-373. Chen, S. Y., Lin, Y. T., Lin, C. W., Chen W. Y., Yang, C. H. and H. M. Ku. 2010.     Transferability of rice SSR markers to bamboo. Euphytica 175: 23-33. Chen, S. Y. 2012. Conservation of microsatellites in vascular plant and their        application in genetic diversity analysis. Department of Agronomy National     Chung Hsing Doctoral Dissertation University. P140. Doyle, J. J. and J. L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12:     13-15. Dietrich, W., H. Katz, S. E. Lincoln, H. S. Shin, J. Friedman, N. C. Dracopoli and E.     S. Lander. 1992. A genetic map of mouse suitable for typing intraspecific     crosses. Genetics 131(2): 423-447. Dieringer, D. and C. Schlotterer. 2003. Two distinct modes of microsatellite mutation     processes: evidence from the complete genomic sequences of nine species.     Genome Reserch 13:2242-2251. Ellstrand, N. C. and D. R. Elam. 1993. Population genetic consequences of small     population size : implications for plant conservation. Ann. Rer. Ecol.     System. 24: 217-242. Excoffer, L., P. E. Smouse and J. M. Quattro. 1992. Analysis of molecular variance     inferred from matrix distance among DNA haplotypes: application to     human mitochondria DNA restriction data. Genetics 131: 479-91. Gerbi, S. 1985. Evolution of ribosomal RNA. In: R. J. MacIntyre (ed) Molecular        Evolutionary Genetics. New York Plenum p.419-517. Grativol, C., C. Lira-Medeiros, A. S. Hemerly and P. C. G. Ferreira. 2011. High     efficiency and reliability of inter-simple sequence repeats (ISSR) markers     for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L.     accessions. Mol. Biol. Rep. 38: 4245-4256. Goulao, L and Oliveira C. M. 2001. Molecular characterization of cultivars of apple     (Malus × domestica Borkh.) using microsatellite (SSR and ISSR) markers.     Euphytica 122(1): 81-89. Hayata, B. 1915. Scitamineae. Icones Plantarum Formosarum. Vol.5. Bureau Prod.     Industr., Govt. Formosa, Taihoku: 215-228. Hayata, B. 1920. Icones Plantarum Formosanarum 9: 118-124. Bureau Prod. Industr.,     Govt. Formosa. Hillis, D. M. and M. T. Dixon. 1991. Ribosomal DNA: molecular evolution and     phylogenetic inference. Q. Rev. Biol. 66: 411-453. Hilu, K. W. and H. Liang. 1997. The matK gene: sequence variation and application     in plant systematics. Am. J. Bot. 84:830–839. Heesacker, A., V. K. Kishore, W. Gao, S. Tang, J. M. Kolkman, A. Gingle, M.     Matvienko, A. Kozik, R. M. Michelmore, Z. Lai, L. H. Rieseberg and S. J.     Knapp. 2008. SSRs and INDELs mined from the sunflower EST database:     abundance, polymorphisms, and cross-taxa utility. Theor Appl Genet 117:     1021-1029. Ho, K. Y. and N. Y. Ko. 2010. Genetic Diversity among Melia azedarach L.     populations at different Climatic Regions in Taiwan. Crop, Environment &     Bioinformatics 7: 195-211. Hailu, F., A. Merker, G. Belay and E. Johansson. 2005 Molecular diversity and     phylogenetic relationships of tetraploid wheat species as revealed by     inter-simple sequence repeats (ISSR) from Ethiopia. Journal of Genetics     and Breeding. 59: 329-337. Ho, K. Y., J. C. Yang, S. L. Deng and T. H. Chen. 2003. Assessment of genetic     variation and relationships of international provenances of Casuarina     junghuhniana using ISSR. Taiwan J For Sci. 19(1): 79-88. Ho K. Y., C.H. Ou, J. C. Yang and J. Y. Hsiao. 2002. An assessment of DNA     polymorphisms and genetic relationships of Casuarina equisetifolia using     RAPD markers. Bot. Bull. Acad. Sin. 43:93-8. Jatoi, S. A., A. Kikuchi, M. Mimura, S. S. Yi and K. N. Watanabe. 2008.     Relationships of Zingiber species, and genetic variability assessment in     ginger (Zingiber officinale) accessions from ex-situ genebank, on-farm and     rural markets. Breeding Science 58: 261-270. Jatoi, S. A., A. Kikuchi, S. S. Yi, K. W. Naing, S. Yamanaka, J. A. Watanabe and K.     N. Watanabe. 2006. Use of Rice SSR markers as RAPD markers for genetic     diversity analysis in Zingiberaceae. Breeding Science 56: 107–111. Ju, L. P., and Y. N. Wang. 2008. Genetic variation of Cinnamomum Camphora     population of Taiwan and surrounding areas. Quarterly Journal of Chinese     Forestry 41(4): 437-447. Kladmook, M., Chidchenchey, S. and V. Keeratinijakal. 2010. Assessment of genetic     diversity in cassumunar ginger (Zingiber cassumunar Roxb.) in Thailand     using AFLP markers. Breeding Science 60: 412-418. Kuo, Y., F. Y. Lu, M. H. Duh and S. L. Deng. 2008. A new species, Alpinia nantoensis     (Zingiberaceae), from Taiwan. Taiwan J. For. Sci. 23: 93-97. Kress, W. J., A. Z. Liu, M. Newman and Q. J. Li. 2005. The molecular phylogeny of     Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers. Am.     J. Bot. 92: 167-178. Kalia, R. K., M. K. Rai, S. Kalia, R. Singh and A. K. Dhawan. 2011. Microsatellite     markers: an overview of the recent progress in plants. Euphytica 177:     309-334. Liu, S. C., C. T. Lu and J. C. Wang. 2009. Reticulate hybridization of Alpinia     (Zingiberaceae) in Taiwan. J. Plant Res. 122: 305-316. Li Y., B. F. Zhu, Y. M. Jiang, S. B. Lu and D. Zhu. 2008. ISSR Analysis on genetic     diversity of the relict plant Amentotaxus argotaenia natural populations in     Jiangxi Province. J. Nan. Univ. 32: 405-408. Mondini, L., A. Noorani and M. A. Pagnotta. 2009. Assessing plant genetic diversity     by molecular tools. Diversity. 1: 19-35. Morgante, M. and A. M. Olivieri. PCR-amplified microsatelites as markers in plant     genetics. The Plant Journal 3(1)175-182. Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations.     Ann. Human Genet. 41: 225-233. Nagaraju, J., M. Kathlrvel, R. R. Kumar, E. A. Slddlq and S. E. Hasnaln. 2002.     Genetic analysis of traditional and evolved Basmati and non-Basmati rice     varieties by using fluorescence-based ISSR-PCR and SSR markers. PANS     99: 5836-5841. Neuhaus, H. and G. Link. 1987. The chloroplast trnAlys(UUU) gene from mustard     (Sinapsis alba) contains a class II intron potentially coding for a     maturase-related polypeptide. Curr. Genet. 11:251–257. van Nues, R. W., Rientjes, J. M. J., Morre, S. A., Mollee, E., Planta, R. J., Venema, J.,     and Raue, H. A. 1995. Evolutionarily conserved structural elements are     critical for processing of internal transcribed spacer 2 from Saccharomyces     cerevisiae precursor ribosomal RNA. J. Mol. Biol. 250: 24-36. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating     intraspecific genetic diversity in plants. Molecular Ecology 13: 1143-1155. Olmstead, R. G. and J. D. Palmer. 1994. Chloroplast DNA systematics: a review of     methods and data analysis. Am. J. Bot. 81:1205–1224. Peakall, R., S. Gilmore, W. Keys, M. Morgante and A. Rafalski. 1998. Cross-species     amplification of soybean (Glycine max) simple sequence repeats (SSRs)     within the genus and other legume genera: implications for the     transferability of SSRs in plants. Molecular Biology Evolution 15(10):     1275-1287. Page, R. D. M. and Holmes, E. C. 1998. Molecular evolution: a phylogenetic     approach. London, Blackwell. Provan J. 2000. Novel chloroplast microsatellites reveal cytoplasmic variation in     Arabidopsis thaliana. Molecular Ecology 9: 2155-2234. Pairon, M. and A. L. Jacquemart. 2008. Detection and characterization of     genome specific microsatellite marker in the allotetraploid Prunus serotina.     Journal of the American Society for Horticultural Science 133(3): 390-395. Prevost, A. and M. Wilkinson. 1999. A new system of comparing PCR primers     applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98:     107-112. Rohlf, F. J. 2000. NTSYSpc: numerical taxonomy system, ver. 2.10e. Exeter     Publishing, Ltd.: Setauket, NY. Roa, A. C., P. C. Aguirre, M. C. Duque, M. M. Maya, M. W. Bonierbale, C. Iglesias     and J. Tohme. 2000. Cross-species amplification of cassava (Manihot          esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and     degree of relationship. American Journal of Botany 87(11): 1647:1655. Roldan-Ruiz, I., J. Dendauw, E. V. Bockstaele, A. Depicker and M. D. Loose. 2000.     AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.).     Molecular Breeding 6: 125-134. Slatkin, M. 1987. Gene flow and the geographic structure of natural populations.     Science 236: 787-792. Smith, R. M. 1990. Alpinia (Zingiberaceae): A proposed new infrageneric     classification. Edinb. j. bot. 47: 1-75. Schlotterer C., B. Amos and D. Tautz. 1991. Conservation of polymorphic simple     sequence loci in cetacean species. Nature 354:63-65. Sang, T., D. J. Crawford, and T. F. Stuessy. 1997. Chloroplast DNA phylogeny,     reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J.     Bot. 84: 1120–1136. Squirrell, J., P. M. Hollingsworth, M. Woodhead, J. Russell, A. J. Lowe, M. Gibby     and W. Powell. 2003. How much effort is required to isolate nuclear     microsatellites from plants? Molecular Ecology 12: 1339-1348. Sigrist, M. S., J. B. Pinheiro, J. A. A. Filho and M. I. Zucchi. 2011. Genetic diversity     of turmeric germplasm (Curcuma longa; Zingiberaceae) identified by     microsatellite markers. Genetics and Molecular Research 10(1):419-428. Singh, A. K., J. Smart, C. E. Simpson and S. N. Raina. 1998. Genetic variation     vis-a-vis molecular polymorphism in groundnut, Arachis hypogaea L.     Genet Resour Crop Evol. 45: 119-126. Saritnum, O. and P. Sruamsiri. 2003. Random amplified polymorphic DNA analysis     of Galanga (Alpinia spp.) accessions. CMU. Journal. 2(3): 159-164. Terzopoulos, P. J. and P. J. Bebeli. 2008. Genetic diversity analysis of Mediterranean     faba bean (Vicia faba L.) with ISSR markers. Field Crops Research. 108:     39-44. Tansley, S. A., C. R. Brown. 2000. RAPD variation in the rare and endangered     Leucadendron elimence (Proteaceae): implications for their conservation.     Biol Conserv 95:39-48. Temnykh, S., G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour and S.     McCouch. 2001. Computational and experimental analysis of     microsatellites in rice (Oryza sativa L.): frequency, length variation,     transposon associations and genetic marker potential. Genome Research 11:     1441-1452. Tan T., Z. X. Jin, J. M. Li and W. B. Zhang. 2008. Genetic differentiation of     Calycanthus chinensis an endangered plant. J. Nor. For. Univ. 23: 77-82. Tseng, Y. H., C. Y. Liou, S. M. Ku and C. C. Wang. 2010. The identity of Alpinia     koshunensis Hayata (Zingiberaceae). Taiwania 55: 67-71. Tseng, Y. H. and C. C. Wang. 2011. Alpinia oui (Zingiberaceae), a new species from     Taiwan. Novon: A Journal for Botanical Nomenclature 21: 270-273. Wright S. 1978. Variability within and among natural populations In: Evolution and     the Genetics of Populations, Vol. 4. University of Chicago Press, Chicago,     IL. Williams, K. J., W. J. Kress and P. S. Manos. 2004. The phylogeny, evolution, and     classification of the genus Globba and tribe globbeae (Zingiberaceae):     appendages do matter. American Journal of Botany. 91(1): 100-114. Wang, H., X. Liu, M. Wen, K. Pan, M. Zou, C. Lu, S. Liu, and W. Wang. 2012.     Analysis of the genetic diversity of natural populations of Alpinia     oxyphylla miquel using Inter-Simple Sequence Repeat markers. Crop sci.     52: 1767-1775. Wang, A., Z. Yu. and Y. Ding. 2009. Genetic diversity analysis of wild close relatives     of barley from Tibet and the Middle East by ISSR and SSR markers.     Comptes rendus biologies 332: 393-403. Zhou, H. P., J. Chen and S. Z. Zhang. 2008. Genetic and clonal diversity of Globba     Racemosa, a herb with a mixed reproductive mode. Journal of Plant Ecology 32(4): 751-759. Zietkiewicz, E., A. Rafalski and D. Labuda. 1994. Genome fingerprinting by simple     sequence repeat (SSR)-anchored polymerase chain reaction amplification.     Genomics 20: 176-183. Zou, Y., P. Zou, H. Liu and J. Liao. 2013. Development and characterization of     microsatellite markers for Alpinia oxyphylla (Zingiberaceae). Applications     in Plant Sciences. 1(4): 1200457.
摘要: 
根據台灣植物誌第二版及原始發表文獻,本島現生之月桃屬植物共有18個分類群,分別為A. flabellata、A. formosana、A. galanga、A. intermedia、A. japonica、A. kusshakuensis、A. mesanthera、A. pricei var. pricei、A. pricei var. sessiliflora、A. shimadae var. shimadae、A. shimadae var. kawakamii、A. tonrokuensis、A. uraiensis、A. zerumbet、 A. nantoensis、A. koshunesis、A. oui和A. xilanensis。並於形態分類上,可被分為subsect. Presleia、subsect. Alpinia、subsect. Catimbium與subsect. Cenolophon四個亞節。然而在這18種月桃屬植物在染色體相同(2n = 48),部分種的生長區域以及花期重疊情況之下,容易產生共域和反複雜交的情況,加上台灣地理和氣候環境變化明顯,可能演化出種內的不同生態型(ecology type)族群,此兩種因素皆造成形態分類上的困難。其中A. intermedia因為生長泛布於台灣全境,受環境影響而導致外觀形態變異大,於不同地理區之族群曾被命名為不同物種,包括A. kelungusis、A. suishaensis和A. oblongifolia。本論文將利用120組單子葉SSR (simple sequence repeat)和17組ISSR (inter simple sequence repeat)這兩種不受環境影響的DNA分子標誌,針對台灣產除了A. xilanensis外的17種月桃屬植物,以及採集自18個不同地區的A. intermedia complex進行遺傳歧異度分析。第一部分的試驗結果,120組單子葉SSR分子標誌於月桃屬植物中產生64.7%的轉移率(transferability),以及0.18的PIC值,並於樹狀圖中得到類似四種形態亞節的分類群集。在第二部分的試驗裡,A. intermedia complex於單子葉SSR分子標誌和ISSR分子標誌各得到了PIC = 0.14和 PIC = 0.26的多型性訊息。而在兩種分子標誌個別以及合併的分類群集中,皆可將A. intermedia complex中的A. kelungusis、A. suishaensis與A. intermedia var. intermedia區分為不同群集,並且在基因流的數值小於1 (Nm = 0.51)的結果中,證明A. intermedia complex內已產生分化。綜合結果顯示,單子葉SSR分子標誌轉移系統,在基因組資訊尚未完整植物的遺傳歧異度分析上,可提供相當成效的分群能力與分類結果。而且分子標誌系統可提供受環境演化的種內生態型植株,進行較高程度且客觀的分群分析。

By 2012, 18 Alpinia species in Taiwan publications have been reported, including A. flabellata、A. formosana、A. galanga、A. intermedia、A. japonica、A. kusshakuensis、A. mesanthera、A. pricei、A. pricei var. sessiliflora、A. shimadae、A. shimadae var. kaeadamii、A. tonrokuensis、A. uraiensis、A. zerumbet、 A. nantoensis、A. koshunesis、A. oui and A. xilanensis. These Alpinia species are classified into four subsections, subsect. Presleia、subsect. Alpinia、subsect. Catimbium and subsect. Cenolophon. However, due to the same chromosome number (2n = 48) and the overlapping of the partial species’ growth regions and flowering periods, these Alpinia have shown the sympatric hybridization and the intermediate hybridization phenomenon. In addition, with the distinct geographic and climatic variations in Taiwan, Alpinia might evolve into different ecology type populations. This causes difficulties in identifying Alpinia species. A. intermedia complex, a name integrated with ‘A. kelungusis、A. suishaensis and A. oblongifolia’ is an example for its distribution throughout wide spread Taiwan and being affected by various environments. In this study, 120 monocot SSR (simple sequence repeat) markers and 17 ISSR (inter simple sequence repeat) markers were performed to investigate the genetic diversity of seventeen Alpinia species and A. intermedia complex collected from18 different geographical regions in Taiwan.
In the first part of the tests, 120 monocot SSR markers transferred into 17 Alpinia species, with 64.7% transferability and high distribution ability (PIC = 0.18), and further resulted in classified Alpinia species and the dendrograms, which were consistent to four taxonomically subsections. In the second part, 120 monocot SSR markers transferred into A. intermedia complex showed a higher PIC value (0.14), than that of seventeen ISSR markers analysis (0.26). However, the dendrograms indicated that monocot SSR, ISSR or combined data all grouped A. kelungusis、A. suishaensis and A. intermedia var. intermedia into different clusters. In conclusion, the results suggested that monocot SSR markers transferred system showed a high PIC value and reliable dendrograms on genetic diversity analysis of Alpinia species and could be an efficient tool for genetic diversity studies of species with limited genetic information.
URI: http://hdl.handle.net/11455/37266
其他識別: U0005-0508201317313300
Appears in Collections:農藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.