Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3728
標題: 多層壁奈米碳管-三氧化二鋁包覆二氧化矽奈米複合薄膜作為直接電子傳遞生物感測器之探討
Direct electrochemistry and biosensing based on multiwalled carbon nanotube-alumina-coated silica nanocomposite films
作者: 黃建隆
Huang, Jian-Lung
關鍵字: direct electron transfer;奈米碳管;carbon nanotube;horseradish peroxidase;glucose oxidase;辣根過氧化酶葡萄糖氧化酵素
出版社: 化學工程學系所
引用: [1] Berezin, I. V.; Varfolomeev, S. D. Appl. Biochem. Bioeng. 1978, 2, 259-290. [2] Tarasevich, M. R.; Yaropolov, A. I. Bioelectrochem. Bioenergetics 1979, 6, 393-403. [3] Varfolomeev, S. D.; Kurochkin, I. N. Biosen. Bioelectron. 1994, 9, 353-357. [4] Luo, X. L.; Killard, A. J.; Smyth, M. R. Electroanal. 2006, 11, 1131-1134. [5] Chen, T.; Binyamin, G.; Heller, A. Anal. Sci. 2001, 17, supplement. [6] Wang, L.; Yuan, Z. Sensors 2003, 3, 544-554. [7] Mousty, C. Clay Science 27 (2004) 159-177 [8] Wu, J.; Qu, Y. Anal. Bioanal. Chem. 2006, 385, 1330-1335. [9] Zhao, X.; Mai, Z.; Kang, X.; Zou, X. Biosens. Bioelectron. 23 (2008) 1032–1038. [10] Cai, W. Y.; Xu Q.; Zhao X. N.; Zhu J. J.; Chen, H. Y. Chem. Mater. 18 (2006) 279–284. [11] Xu, Y.; Peng, W.; Liu X.; Li, G. Biosensors and Bioelectronics 20 (2004) 533–537. [12] Biosensors and Bioelectronics 20 (2004) 533–537. [13] Song, Y.; Wang, L.; Ren, C.; Zhu, G.; Li, Z. Sens.Actuator B 114 (2006) 1001–1006. [14] Chen J. Anal. Biochem. 2004, 332, 75–83. [15] Cai, C. X.; Chen J. Anal. Biochem. 2004, 332, 75–83. [16] Yang, T. H.; Hung, C. L.; Ke, J. H.; Zen, J. M. Electrochemistry Communiactions 10 (2008) 1094–1097. [17] Varfolomeev, S. D.; Kurochkin, I. N. Biosen. Bioelectron. 1994, 9, 353-357. [18] Chen J. Anal. Biochem. 2004, 325, 285–292. [19] Bistolas N. Anal. Bioanal. Chem. 2002, 372, 235–239. [20] Anal. Chem. 2002, 74, 1993-1997. [21] Electrochemistry Communications 5 (2003) 825–829. [22] http://juang.bst.ntu.edu.tw/BCbasics/Enzyme12.htm [23] http://chem.ps.uci.edu/~pfarmer/127i/hemepr.html [24] http://chem.ps.uci.edu/~pfarmer/127i/h2o2act.html [25] http://www.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/pdb77_1.html [26] http://en.wikipedia.org/wiki/FAD [27] Trevor Palmer,“Understanding enzymes“,藝軒出版社, 1995. [28] R. A. Messing, Academic Press, New York, p1, 1975. [29] Shuler, M.L.;Kargi,F.,“Bioprocess Engineering: Basic Concepts”, 2nd ed., Prentice Hall, 2002 [30] Lee, J.M., “ Biochemical Engineering”, Prentice Hall, 1992 [31] F.T. Richard, S.S. Jerome, Handbook of Chemical and Biological Sensors, p5. [32] J.M.S. Cabral, J.F. Kennedy, R. F. Taylor(New York; Dekker), 73,1991. [33] J.C. Vidal, E. Garcia, J.R. Castillo, Sensors and Actuators B, 57,219,1999. [34] U. Mirtha, W. Jess, Anal. Chem., 58,2979,1986. [35] L. Doretti, D. Ferrara, P. Gattolin, S. Lora, Talanta, 44, 859, 1997. [36] G.T. Constantinos, B.F. Ageliki, N.T. Pantelis, Electro. Commu., 7, 781, 2005. [37] D. Lucio, F. Daniela, G. Paola, L. Silvano, Talanta, 44, 859, 1997. [38] J. Parellada, A. Narvaez, Biosens. Bioelectron., 12, 267, 1997. [39] J. Li, L.S. Chia, N.K. Goh, S.N. Tan, J. Electroanal. Chem., 460, 234, 1999. [40] 呂淑佩,聚苯胺複合式酵素碳粉電極在生化分析上的應用,國立東華大學化學研究所,2002。 [41] A.J. Bard, I.R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000. [42] D.R. Crow, Principle and Applications of Electrochemistry,高立,1998。 [43] H. Tang, J. Chen, S. Yao, L. Nie, and G. Deng, Anal. Biochem. 331 (2004) 89-97. [44] F.M. Veronese, C. Mammucari, F. Schiavon, O. Schiavon, S. Lora, F. Secundo, A. Chilin, A. Guiotto, Il Farmaco, 56, 541, 2001. [45] 胡啟章,電化學原理與方法,五南圖書,2002。 [46] http://www.dupont.com.tw [47] Z. Liu, B. Liu, J. Kong, J. Deng, Anal. Chem., 72, 4707, 2000. [48] D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 363, 605, 1993. [49] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Chem. phys. chem, 2, 78, 2001. [50] N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett., 68,1579,1992. [51] R.Saito, M. Fujita, G. Dresselhaus, M. S. Dresslhaus, Appl. Rev. Lett., 60,2204,1992. [52] J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature, 391, 59, 1998. [53] J. E. Fischer, Acc. Chem. Res., 35,1079,2002. [54] C.C. Pang, Min.H. Chen, T.Y. Lin, T.C. Chou, Sensor and Actuators B, 73, 221, 2001. [55] P. C. Pandey, S. Upadhyay, Ida Tiwari, V. S. Tripathi, Anal. Biochem., 288, 39, 2001. [56] X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Electrochem. Commun., 5, 408, 2003. [57] M. Umana, J. Waller, Anal. Chem., 58, 2979, 1986. [58] M.C. Shin, H.S. Kim, Biosens. Bioelectron., 11, 171, 1996. [59] K. Yamamoto, G.Y. Shi, T.S. Zhou, F. Xu, J.M. Xu, T. Kato, J.Y. Jin, L.T. Jin, Analyst, 128, 249, 2003. [60] X. Yu, G. A. Sotzing, F. Papadimitrakopoulos, J. F. Rusling, Anal. Chem., 75, 4565, 2003. [61] K. Wu, J. Fei, S. Hu, Anal. Biochem., 318, 100, 2003. [62] T. N. Rao, I. Yagi, T. Miwa, D.A. Tryk, A. Fujishima, Anal. Chem., 71, 2506, 1999. [63] A. Hirsch, Angew. Chem. Int. Ed., 41, 1853, 2002. [64] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bardley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F.R. Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science, 280, 1253, 1998. [65] A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smally, H.H. Hwu, J.G. Chen, J. Am. Chem. Soc., 123, 10699, 2001. [66] A. Kuznetsova, D.B. Mawhinney, V. Naumenko, J.T. Yates, J. Liu, R.E. Smalley, Chem. Phys. Lett., 321, 292, 2000. [67] E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smally, R.H. Hauge, J.L. Margrave, J. Phys. Chem. B, 103, 4318, 1999. [68] P.J. Boul, J. Liu, E.T. Mickelson, C.B. Huffman, L.M. Ericson, I.W. Chiang, K.A. Smith, D.T. Colbert, R.H. Hauge, J.L. Margrave, R.E. Smally, Chem. Phys. Lett., 310, 367, 1999. [69] M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science, 297, 593, 2002. [70] M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett., 342, 265, 2001. [71] J. Zhu, M. Yudasaka, M. Zhang, S. Iijima, J. Phys. Chem. B, 108, 11317. [72] J.E. Riggs, Z. Guo, D.L. Carroll, Y.P. Sun, J. Am. Chem. Soc., 122, 5879, 2000. [73] A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Angew. Chem. Int. Ed., 40, 1721, 2001. [74] B. Star, D.W. Steuerman, J.R. Heath, J.F. Stoddart, Angew. Chem. Int. Ed., 41, 2508, 2002. [75] Y.-C. Tsai et al. / Carbon 45 (2007) 2823–2827 [76] DuPont: http://www.dupont.com.tw [77] B. Hoyer, T.M. Florence, G.E. Batley, Anal. Chem., 59, 1608, 1987. [78] J. Wang, Analytical Electrochemistry, Second Edition, Wiley-VCH, New York, 2000. [79] D.J. Harrison, R.F.B. Turner, H.P. Baltes, Anal. Chem., 60, 2002, 1988. [80] J.M. Zen M.L. Lee, Anal. Chem., 65, 3238, 1993. [81] Z. Chen, Z. Pourabedi, D.B. Hibbert, Electroanalysis, 11, 964, 1999. [82] B. Hoyer, N. Jensen, L.P. Busch, Electroanalysis, 13,843, 2000. [83] K. Crowley, J. Cassidy, Electroanalysis, 14, 1077, 2001. [84] G. Kefala, A. Econmou, A. Voulgaropoulos, Analyst, 129, 1082, 2004. [85] V. Tohver, J. E. Smay, A. Braem, P. V. Braun, J. A. Lewis, Proc. Natl. Acad. Sci. U. S. A., 98, 8950, 2001. [86] Evans, T. C. Biological Bulletin. 1947, 92, 99-100. [87] Hoffman, M. E.; Mello-Filho, A. C.; Meneghini , R. Biochim Biophys Acta. 1984, 781, 234-238. [88] Kellogg, E. W.; Fridovich, I. J Biol Chem. 1975, 250, 8812-8817. [89] Scandalios, J.G. ed. Molecular Biology of Free Radical Scavenging Systems. New York : Cold Spring Harbor Laboratory Press. [90] Rodriguez, H.; Drouin, R.; Holmquist, G. P.; O’Connor, T. R.; Boiteux, S.; Laval J, Doroshow, J.H.; Akman, S.A. J Biol Chem. 1995, 270, 17633-17640. [91] Sigma Chemical Co., Material Safety Data Sheet (2000), Hydrogen peroxide 30 wt.% in water. [92] Windhol M, ed. (1995) The Merck Index, 12th Ed. New York: Merck and Co. Inc. [93] http://www.greencross.org.tw/food&disease/h2o2.htm [94] http://www.pcc.vghtpe.gov.tw/old/docms/40515.htm [95] F. W. Scheller, U. Wollenberger, A. Warsinke, and F. Lisdat, Current Opinion in Biotechnology, 2001, 12, 35–40. [96] M. Alvarez-Icaza, U. Bilitewski, Anal. Chem., 65, 525, 1993. [97] M. Quinto, I. Losito, F. Palmisano, C. G. Zambonin, Anal. Chim. Acta., 420, 9, 2000. [98] A.P. Robert, Med. Instrum., 51. [99] Michael, J. O’Brien II, S.R.J. Brueck, V.H. Perez-Luna, L.M. Tender, G.P. Lopez, Biosens. Bioelectron., 14, 145, 1999. [100] Qian, L.; Yang, X. Talanta 68 (2006) 721–727 [101] Xu, H.; Xiong, H.Y.; Zeng, Q.X.; Jia, L.; Wang, Y.; Wang, S.F. Commun. 11 (2009) 286–289. [102] ElKaoutit, M.; Naranjo-Rodriguez, I.; Domínguez, M.; Hernández-Artiga, M.P.; Bellido-Milla, D.; Luis Hidalgo-Hidalgo de Cisneros, J. Electrochim. Acta 53 (2008) 7131–7137. [103] Chen, C. D.; Chen, X.; Xiao, C.; Nie, L.; Yao, S. Biosensor and Bioelectronics 23 (2008) 1272–1277. [104] Liu, Q.; Lu, X.; Yao, X.; Li, J. Biosensors and Bioelectronics 22 (2007) 3203–3209. [105] Zuo, S.; Teng, Y.; Yuan, H.; Lan, M. Sensors and Actuators B 133 (2008) 555–560.
摘要: 
本論文主要在探討酵素之直接電子傳遞(direct electron transfer, DET)之電化學性質,直接電子傳遞定義為能夠直接的將電極與酵素做連結,實驗中利用帶有高正電荷之三氧化二鋁(alumina-coated silica nanoparticles, ACS)分散多層壁奈米碳管(multi-walled carbon nanotubes, MWCNT),將MWCNT-ACS奈米複合材料修飾以自組裝的方式修飾於玻璃碳電極(glassy carbon electrode, GCE)表面作為連接酵素與電極之間的橋樑,將酵素修飾在製備出MWCNT-ACS/GCE上,並覆蓋一層全氟磺酸聚合物(Nafion)將酵素加以固定,製備出具有直接電子傳遞特性之生物感測電極,第一部分使用的酵素為辣根過氧化酶(horseradish peroxidase, HRP),而第二部份所使用的酵素是葡萄糖氧化酵素(glucose oxidase, GOD),將這兩個酵素修飾在MWCNT-ACS奈米複合薄膜所修飾的玻璃碳電極(glassy carbon electrode, GCE)上皆顯示出良好的電化學特性。
第一部份的主題在探討HRP的直接電子傳遞性質與其應用,我們將HRP修飾於經由MWCNT-ACS奈米複合薄膜與Nafion修飾之GCE上,製備出Nafion/HRP/MWCNT-ACS/GCE,利用FE-SEM觀察HRP修飾在MWCNT-ACS奈米複合薄膜前後表面之差異,利用循環伏安法以Ag/AgCl為參考電極掃描速率為0.2 Vs-1的情況,下發現HRP在MWCNT-ACS修飾之電極上可呈現出一對可逆氧化還原峰,顯現出的式電位(formal potential)為-0.264 V,並發現在pH 6到8之間,式電位與pH值之間具有有線性關係,其斜率為-56 mVpH-1,與可逆單一電子傳遞電化學反應結果相當接近其理論值-59 mVpH-1,經由各個條件最佳化後,利用安培法發現以Nafion/HRP/MWCNT-ACS/GCE可成功的偵測到過氧化氫(H2O2),所得到靈敏度為0.157 AM-1cm-2,偵測極限為0.63 μM,線性範圍為1~500 μM,Michaelis常數為0.39 mM,並且避免掉尿酸、敗壞血酸、多巴胺、葡萄糖等人體血液與尿液中常見的干擾。
第二部份將Nafion/GOD/MWCNT-ACS生物奈米修飾複合材料修飾的GCE上,並用FE-SEM探討電極修飾過程之微結構變化,利用循環伏安法觀察發現GOD在MWCNT-ACS修飾之電極上可呈現出一對可逆氧化還原峰,在掃描速率為0.05 Vs-1的情況下以Ag/AgCl為參考電極顯現出的式電位為-0.466 V,並發現在pH 6到8之間,式電位與pH值之間具有有線性關係,其斜率為-55.5 mVpH-1,與可逆雙電子傳遞的電化學反應結果相當接近其理論值-59 mVpH-1,經由各個條件最佳化後,得到Nafion/GOD/MWCNT-ACS/GCE之靈敏度為0.127 AM-1cm-2,線性範圍為100~800 μM,偵測極限為17.5 μM, Michaelis常數為0.5 mM,並可避免尿酸、敗壞血酸的干擾。

Direct electrochemistry and bioelectrocatalytic ability toward the reduction of hydrogen peroxide of horseradish peroxidase (HRP) were found at the multiwalled carbon nanotube/alumina-coated silica (MWCNT/ACS) nanocomposite. The surface morphology of the HRP/MWCNT/ACS nanobiocomposite was characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized HRP in the MWCNT/ACS nanocomposite displayed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.264 V versus Ag/AgCl at a scan rate of 0.2 Vs-1. The formal potential of HRP varied linearly in the range of solution pH values from 6.0 to 8.0 with a slope of -56 mV pH-1, which is close to the theoretical value of -59 mVpH-1 for a reversible one-electron coupled with one-proton electrochemical reaction process. Several important experimental variables were optimized. The optimized hydrogen peroxide biosensor displayed a sensitivity of 0.157 AM-1cm-2, a detection limit of 0.63 μM, a linear range of 1~500 μM, and an apparent Michaelis-Menten constant of 0.39 mM. The performance of the prepared biosensor was evaluated with respect to three possible interferences.
In the next part, the glucose oxidase (GOD) were found at the MWCNT/ACS nanocomposite for the direct electrochemistry and bioelectrocatalytic ability. The surface morphology of the GOD/MWCNT/ACS nanobiocomposite was characterized by FE-SEM. In cyclic voltammetric response, the immobilized GOD in the MWCNT/ACS nanocomposite displayed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0466 V versus Ag/AgCl at a scan rate of 0.05 Vs-1. The formal potential of HRP varied linearly in the range of solution pH values from 6.0 to 8.0 with a slope of -55.5 mV pH-1, which is close to the theoretical value of -59 mVpH-1 for a reversible two-electron coupled with two-proton electrochemical reaction process. Several important experimental variables were optimized. The optimized hydrogen peroxide biosensor displayed a sensitivity of 0.127 AM-1cm-2, a linear range of 100~800 μM, a detection limit of 17.5 μM, and an apparent Michaelis-Menten constant of 0.5 mM. The performance of the prepared biosensor was evaluated with respect to two common interferences.
URI: http://hdl.handle.net/11455/3728
其他識別: U0005-1007200913514200
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.