Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/37285
標題: 水稻節水栽培的水分管理與甲烷排放
Water management and methane emission in water-saving irrigated rice
作者: 野田佳宏
Noda, Yoshihiro
關鍵字: 水稻;rice;節水栽培;甲烷;water-saving;methane
出版社: 農藝學系所
引用: 西尾尚道。メタン生成菌の生理と利用。1992。化学と生物30:537-542。 林經偉、黃山內、陳文雄、劉瑞美、陳世雄。2005。水稻連作與綠肥輪作制度下甲烷氣體之釋放及減量研究。臺南區農業改良場研究彙報46: 1-9。 陽捷行、八木一行。1988。水田から発生するメタンのフラックス測定法。日本土壌肥料学雑誌59: 458-463。 Adachi, K. 2001. Methanogenic archaea and methanotrophic bacteria in a subtropical paddy field and their interaction: controlling methane emissions from paddy fields. Microbes Environ. 16: 197-205. Anbumozhi, V., E. Yamaji and T. Tabuchi. 1998. Rice crop growth and yield as influenced by changes in ponding water depth, water regime and fertigation level. Agric. Water Manage. 37: 241-253. AQUASTAT http://www.fao.org/nr/water/aquastat/main/index.stm Accessed June 26, 2013 Banger, K., H. Q.Tian and C.Q. Lu. 2012. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Global Change Biol. 18: 3259-3267. Boonjung, H. and S. Fukai .1996. Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield. Field Crops Res. 48: 47-55. Bouman, B. A. M., R. M. Lampayan and T. P. Tuong. 2007. Water management in irrigated rice: Coping with water scarcity. Los Banos. International Rice Research Institute. pp. 45-47. Chin, K. J., T. Lukow and R. Conrad. 1999. Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl. Environ. Microbiol. 65: 2341-2349. Das, K. and K. K. Baruah. 2008. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant. Physiol. Plant. 134: 303-312. Eusufzai, M. K., T. Tokida, M. Okada, S. Sugiyama, G. C. Liu, M. Nakajima and R. Sameshima. 2010. Methane emission from rice fields as affected by land use change. Agric. Ecosyst. Environ. 139: 742-748. FAOSTAT http://faostat.fao.org/ Accessed June 26, 2013 Farooq, M., N. Kobayashi, A. Wahid, O. Ito and S. M. A. Basra. 2009. Strategies for producing more rice with less water. Adv. Agron. 101: 351-388. Fraiture, C. and D. Wichelns. 2010. Satisfying future water demands for agriculture. Agric. Water Manage. 97: 502-511. Hu, R. G., R. Hatano, K. Kusa and T. Sawamoto. 2002. Effect of nitrogen fertilization on methane flux in a structured clay soil cultivated with onion in central Hokkaido, Japan. Soil Sci. Plant Nutr. 48: 797-804. Itoh, M., S. Sudo, S. Mori, H. Saito, T. Yoshida, Y. Shiratori, S. Suga, N. Yoshikawa, Y. Suzue, H. Mizukami, T. Mochida and K. Yagi. 2011. Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric. Ecosyst. Environ.141: 359-372. Johnson-Beebout, S. E., O. R. Angeles, M. C. R. Alberto and R. J. Buresh. 2009. Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants. Geoderma 149: 45-53. Khush, G. S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59: 1-6. Kulkarni, S. 2011. Innovative technologies for water saving in irrigated agriculture. Int. J. Water Resour. Arid Environ. 1: 226-231. Latif, M. A. and E. Yamaji. 2011. A study on field water tube''s effectiveness as a practical indicator to irrigation SRI. I. J. E. R. D. 2: 24-29. Liou, R. M., S. N. Huang and C. W. Lin. 2003. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere 50: 237-246. Liu, C. W. and C. Y. Wu. 2004. Evaluation of methane emissions from Taiwanese paddies. Sci. Total Environ. 333: 195-207. Ma, K. and Y. H. Lu. 2010. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. FEMS Microbiol. Ecol. 75: 446-456. Matsuo, N. and T. Mochizuki. 2009. Growth and yield of six rice cultivars under three water-saving cultivations. Plant Prod. Sci. 12: 514-525. Minamikawa, K., N. Sakai and K. Yagi. 2006. Methane emission from paddy fields and its mitigation options on a field scale. Microbes Environ. 21: 135-147. Mishra, A. and V. M. Salokhe. 2010. The effects of planting pattern and water regime on root morphology, physiology and grain yield of rice. J. Agron. Crop Sci. 368-378. Nakamura, K. and Y. Kamagata. 2006. Recent topics on methanogenic syntrophs (in Japanese). J. Environ. Biotechnol. 5: 81-89. Naser, H. M., O. Nagata, S. Tamura and R. Hatano. 2007. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci. Plant Nutr. 53: 95-101. Noll, M., M. Klose and R. Conrad. 2010. Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil. FEMS Microbiol. Ecol. 73: 215-225. Nouchi, I., T. Hosono and K. Aoki. 1999. Methane emission from rice paddy through rice plants (in Japanese). Agric. Meteorol. 55:267-287. Oki, T. and S. Kanae. 2006. Global hydrological cycles and world water resources. Science 313:1068-1072. Sakai, S., H. Imachi, Y. Sekiguchi, A. Ohashi, H. Harada and Y. Kamagata. 2007. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl. Environ. Microbiol. 73: 4326-4331. Shigematsu, T., Y. Q. Tang and K. Kida. 2009. Microbial communities related to methane fermentation processes(in Japanese with English abstract). Seibutsu-kogaku 87: 570-596. Shiratori, Y., H. Watanabe, Y. Furukawa, H. Tsuruta and K. Inubushi. 2007. Effectiveness of a subsurface drainage system in poorly drained paddy fields on reduction of methane emissions. Soil Sci. Plant Nutr. 53: 387-400. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller. 2007. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press pp. 135-143. Tan, X. Z., D. G. Shao, H. H. Liu, F. S. Yang, C. Xiao and H. D. Yang. 2013. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 11: 381-395. The World Bank Database http://databank.worldbank.org/data/home.aspx Accessed June 27, 2013 Tuong, T. P. 1999. Productive water use in rice production : Opportunities and limitations. J. Crop Prod. 2: 241-264. Tuong, T. P., B. A. M. Bouman and M. Mortimer. 2005. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based system in Asia. Plant Prod. Sci. 8: 231-241. Uprety, D. C., K. K. Baruah and L. Borah. 2011. Methane in rice agriculture: A review. J. Sci. Ind. Res.70: 401-411. Watanabe, T., Y. Hosen, R. Agbisit, L. Llorca, N. Katayanagi, S. Asakawa and M. Kimura. 2013. Changes in community structure of methanogenic archaea brought about by water-saving practice in paddy field soil. Soil Biol. Biochem. 58: 235-243. Watanabe, T., G. Wang, K. Taki, Y. Ohashi , M. Kimura and S. ASakawa. 2010a. Vertical changes in bacterial and archaeal communities with soil depth in Japanese paddy fields. Soil Sci. Plant Nutr. 56: 705-715. Watanabe, T., M. Kimura and S. Asakawa. 2010b. Diversity of methanogenic archaeal communities in Japanese paddy field ecosystem, estimated by denaturing gradient gel electrophoresis. Biol. Fertil. Soils 46: 343-353. Won, J. G., J. S. Choi, S. P. Lee, S. H. Son and S. O. Chung. 2005. Water saving by shallow intermittent irrigation and growth of rice. Plant Prod. Sci. 8: 487-492. Xie, B. H., X. H. Zheng, Z. X. Zhou, J. X. Gu, B. Zhu, X. Chen, Y. Shi & Y. Y. Wang, Z. C. Zhao, C. Y. Liu, Z. S. Yao and J. G. Zhu. 2010. Effects of nitrogen fertilizer on CH4 emission from rice fields: Multi-site field observations. Plant Soil 326: 393-401. Yang, C. M. 2008. Strategies and practices leading to the mitigation of greenhouse gases emissions during crops production (in Chinese with English abstract). Crop, Environ. Bioinform. 5: 297-305. Yang, C. M. 2010. Rice irrigation strategies in response to water shortage scenario under climate change: Using aerobic and alternate wetting and drying strategies for rice cultivation (in Chinese). Crop Environ. Bioinform. 7: 212-220. Yang, S. H., S. Z. Peng, J. Z. Xu, Y. F. Luo and D. X. Li. 2012. Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Phys. Chem. Earth 53-54 : 30-37. Yang, S. S., C. M. Lai, H. L. Chang, E. H. Chang and C. B. Wei. 2009. Estimation of methane and nitrous oxide emissions from paddy fields in Taiwan. Renew. Energy 34 : 1916-1922. Yang, S. S. and H. L. Chang. 1998. Effect of environmental conditions on methane production and emission from paddy soil. Agric. Ecosyst. Environ. 69: 69-80. Yang, S. S. and H. L.Chang. 1999. Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan. Agric. Ecosyst. Environ. 76: 75-84. Yang, S. S. and H. L. Chang. 2001. Methane emission from paddy fields in Taiwan. Biol. Fertil. Soils 33:157-165. Yu, K. W. and W. H. Patrick. 2004. Redox window with minimum global warming potential contribution from rice soils. Soil Sci. Soc. Am. J. 68: 2086-2091.
摘要: 
台灣傳統以移植稻方式在湛水狀態下栽培水稻,因此耗費較多的水資源,長期浸水的水稻田也導致甲烷生成的有利條件及改變養份的利用。若能改變水田水分管理方式,可能可以有效降低甲烷排放且維持產量。本研究於嘉義地區坋質-黏土的土壤進行兩種水分處理栽培試驗,一種為利用田間觀測管判定地下水位高低的節水栽培,另一種為慣行的栽培法,節水栽培是依觀測管水位是否低於地表下25 cm定為灌水標準。這種方法是根據田間水位高低與土壤水分含量的關係建立。比較兩種水分管理方法,節水栽培在一期作可節省21%灌溉水,二期作可節省29%灌溉水,節水栽培不影響台稉9號的產量構成要素與產生。另外試驗追蹤田區的甲烷釋放量,一期作在開花期前後看到甲烷釋放的高峰,二期作則營養生長期(插秧後4至6週)出現甲烷釋放量的高峰,兩個期作水田甲烷釋放的趨勢不一致,全季甲烷排放量因水分管理、氮肥處理、栽培生長期及監測取樣點不同具有很大的差異,全季甲烷排放量最低是一期作氮肥180公斤節水處理的1.31 g/m2,最高是二期作氮肥240公斤湛水處理的23.72 g/m2。全季的甲烷排放量一期作比二期作少,主要原因是二期作插秧後時段的土壤溫度夠高,且生育初期供應足夠水分,這些條件促進甲烷菌的生理代謝而導致較多的甲烷排放。本試驗結果證實水田甲烷排放量主要受土壤溫度及田間水分多寡決定,追蹤田區水位與甲烷施放量的關係,資料呈現觀測管地表下水位低於20 cm(<-20 cm)時顯著抑制甲烷排放。

Traditional transplanted rice with continuous standing water in Taiwan has relatively high water inputs. Flooding of the soil is a prerequisite for sustained emissions of methane and modifies nutrient use efficiencies. Manipulation of rice floodwater may offer a means of mitigating methane emission from rice fields without reducing rice yields. To test methods for reducing methane emission and water consumption, we applied two water management methods to rice fields planted on silty-clay soils near Chaiyi, Taiwan. The two water treatments investigated were: field water depth assisted water-saving irrigation, traditional flooding irrigation with midseason drainage aeration. 25 cm under-ground water tube level set as a criterion for water-saving irrigation according to the relationship of field water depth and available soil water content. Compared with conventional irrigation where drainage was in mid-season and flooded at other times, the water-saving irrigation reduced irrigation water by 21% in 1st cropping season and 29% in 2nd cropping season, and without any detrimental effect on yield components and grain yield of Taikeng 9 cultivar. In 1st cropping season there were methane peak on the flowering stage, while the peak appeared on the vegetative stage (4-6 weeks after transplanting) in 2nd cropping season. Methane emission rates varied markedly with water regime, nitrogen treatment, cropping season, and monitor point showing the lowest seasonal total emission (1.31 g m-2) with a N180 water-saving irrigation in 1st cropping season and the highest (23.27 g m-2) with a N240 flooding treatment in 2nd cropping season. Whole season accumulated methane emission of the 1st cropping season was lower than that of 2nd cropping season, it is supposed by the soil temperature and soil moisture on the early stage of 2nd cropping season much appropriate for methanogenic bacteria. Methane emissions from rice fields are determined mainly by soil temperature and water regime, and field water depth below 20 cm significantly suppress methane emissions.
URI: http://hdl.handle.net/11455/37285
其他識別: U0005-2008201317444900
Appears in Collections:農藝學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.