Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3733
標題: 多壁奈米碳管表面改質與插層黏土成長奈米碳管於葡萄糖感測器之應用
Modification of multi-walled carbon nanotubes (MWCNTs) and application of glucose biosensors based on the composite films of MWCNT/Clay
作者: 許豪麟
Hsu, Hao-Lin
關鍵字: Carbon nanotubes;奈米碳管;oxidation;clay mineral;glucose biosensor;氧化法;黏土;葡萄糖生物感測器
出版社: 化學工程學系所
引用: 1. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354, (6348), 56-58. 2. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M., Exceptionally high Young''s modulus observed for individual carbon nanotubes. Nature 1996, 381, (6584), 678-680. 3. Berliocchi, M.; Orlanducci, S.; Reale, A.; Regoliosi, P.; Di Carlo, A.; Lugli, P.; Terranova, M. L.; Brunetti, F.; Bruni, G.; Cirillo, M., Single wall carbon nanotube based aggregates and their electrical characterization. Synthetic Metals 2004, 145, (2-3), 171-176. 4. Saito, Y.; Hamaguchi, K.; Mizushima, R.; Uemura, S.; Nagasako, T.; Yotani, J.; Shimojo, T., Field emission from carbon nanotubes and its application to cathode ray tube lighting elements. Applied Surface Science 1999, 146, (1-4), 305-311. 5. Brosse, A.-C.; Tencé-Girault, S.; Piccione, P. M.; Leibler, L., Effect of multi-walled carbon nanotubes on the lamellae morphology of polyamide-6. Polymer 2008, 49, (21), 4680-4686. 6. Hou, Z.; Wang, K.; Zhao, P.; Zhang, Q.; Yang, C.; Chen, D.; Du, R.; Fu, Q., Structural orientation and tensile behavior in the extrusion-stretched sheets of polypropylene/multi-walled carbon nanotubes'' composite. Polymer 2008, 49, (16), 3582-3589. 7. Mitchell, C. A.; Bahr, J. L.; Arepalli, S.; Tour, J. M.; Krishnamoorti, R., Dispersion of Functionalized Carbon Nanotubes in Polystyrene. Macromolecules 2002, 35, (23), 8825-8830. 8. Jin, Z.; Pramoda, K. P.; Goh, S. H.; Xu, G., Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites. Materials Research Bulletin 2002, 37, (2), 271-278. 9. Kim, J. M.; Choi, W. B.; Lee, N. S.; Jung, J. E., Field emission from carbon nanotubes for displays. Diamond and Related Materials 2000, 9, (3-6), 1184-1189. 10. Liu, Y.; Liu, L.; Liu, P.; Sheng, L.; Fan, S., Plasma etching carbon nanotube arrays and the field emission properties. Diamond and Related Materials 2004, 13, (9), 1609-1613. 11. Saito, Y., Nanoparticles and filled nanocapsules. Carbon 1995, 33, (7), 979-988. 12. Sen, R.; Govindaraj, A.; Rao, C. N. R., Carbon nanotubes by the metallocene route. Chemical Physics Letters 1997, 267, (3-4), 276-280. 13. Venema, L. C.; Wildöer, J. W. G.; Janssen, J. W.; Tans, S. J.; Tuinstra, H. L. J. T.; Kouwenhoven, L. P.; Dekker, C., Imaging Electron Wave Functions of Quantized Energy Levels in Carbon Nanotubes. Science 1999, 283, (5398), 52-55. 14. Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H., Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science 1999, 283, (5401), 512-514. 15. Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N., Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science 1998, 282, (5391), 1105-1107. 16. Yudasaka, M.; Ichihashi, T.; Kasuya, D.; Kataura, H.; Iijima, S., Structure changes of single-wall carbon nanotubes and single-wall carbon nanohorns caused by heat treatment. Carbon 2003, 41, (6), 1273-1280. 17. Jin, Z. X.; Xu, G. Q.; Goh, S. H., A preferentially ordered accumulation of bromine on multi-wall carbon nanotubes. Carbon 2000, 38, (8), 1135-1139. 18. Hamon, M. A.; Chen, J.; Hu, H.; Chen, Y.; Itkis, M. E.; Rao, A. M.; Eklund, P. C.; Haddon, R. C., Dissolution of single-walled carbon nanotubes. Advanced Materials 1999, 11, (10), 834-840. 19. Frehill, F.; Vos, J. G.; Benrezzak, S.; Koos, A. A.; Konya, Z.; Ruther, M. G.; Blau, W. J.; Fonseca, A.; Nagy, J. B.; Biro, L. P.; Minett, A. I.; in het Panhuis, M., Interconnecting Carbon Nanotubes with an Inorganic Metal Complex. In Journal of the American Chemical Society, 2002; Vol. 124, pp 13694-13695. (Conference Paper) 20. Fu, K.; Li, H.; Zhou, B.; Kitaygorodskiy, A.; Allard, L. F.; Sun, Y.-P., Deuterium Attachment to Carbon Nanotubes in Deuterated Water. 2004; Vol. 126, p 4669-4675. (Book) 21. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C., Solution Properties of Single-Walled Carbon Nanotubes. Science 1998, 282, (5386), 95-98. 22. Zheng, G.; Wu, J.; Wang, W.; Pan, C., Characterizations of expanded graphite/polymer composites prepared by in situ polymerization. Carbon 2004, 42, (14), 2839-2847. 23. Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F., Sidewall Functionalization of Carbon Nanotubes. Angewandte Chemie International Edition 2001, 40, (21), 4002-4005. 24. Kroto, H. W.; Heath, J. R.; O''Brien, S. C.; Curl, R. F.; Smalley, R. E., C60: Buckminsterfullerene. Nature 1985, 318, (6042), 162-163. 25. Iijima, S.; Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, (6430), 603-605. 26. Bethune, D. S.; Klang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, (6430), 605-607. 27. Arthur, P. R., Carbon nanotubes for science and technology. Bell Labs Technical Journal 2005, 10, (3), 171-185. 28. Simonyan, V. V.; Johnson, J. K., Hydrogen storage in carbon nanotubes and graphitic nanofibers. Journal of Alloys and Compounds 2002, 330-332, 659-665. 29. Fievet, F.; Lagier, J. P.; Blin, B.; Beaudoin, B.; Figlarz, M., Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 1989, 32-33, (Part 1), 198-205. 30. Hegde, M. S.; Larcher, D.; Dupont, L.; Beaudoin, B.; Tekaia-Elhsissen, K.; Tarascon, J. M., Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders. Solid State Ionics 1996, 93, (1-2), 33-50. 31. Garcia-Gutierrez, D. I.; Gutierrez-Wing, C. E.; Giovanetti, L.; Ramallo-Lopez, J. M.; Requejo, F. G.; Jose-Yacaman, M., Temperature Effect on the Synthesis of Au-Pt Bimetallic Nanoparticles. The Journal of Physical Chemistry B 2005, 109, (9), 3813-3821. 32. Hsu, H.-L.; Jehng, J.-M.; Sung, Y.; Wang, L.-C.; Yang, S.-R., The synthesis, characterization of oxidized multi-walled carbon nanotubes, and application to surface acoustic wave quartz crystal gas sensor. Materials Chemistry and Physics 2008, 109, (1), 148-155. 33. Kurihara, L. K.; Chow, G. M.; Schoen, P. E., Nanocrystalline metallic powders and films produced by the polyol method. NanoStructured Materials 1995, 5, (6), 607-613. 34. Chen, C.-M.; Dai, Y.-M.; Huang, J. G.; Jehng, J.-M., Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 2006, 44, (9), 1808-1820. 35. Thostenson, E. T.; Ren, Z.; Chou, T.-W., Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology 2001, 61, (13), 1899-1912. 36. Bower, C.; Zhu, W.; Jin, S.; Zhou, O., Plasma-induced alignment of carbon nanotubes. Applied Physics Letters 2000, 77, 830-832. 37. Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; de la Chapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388, (6644), 756-758. 38. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E., Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273, (5274), 483-487. 39. Huang, S.; Dai, L.; Mau, A. W. H., Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films. The Journal of Physical Chemistry B 1999, 103, (21), 4223-4227. 40. Rao, C. N. R.; Sen, R.; Satishkumar, B. C.; Govindaraj, A., Large aligned-nanotube bundles from ferrocene pyrolysis. Chemical Communications 1998, (15), 1525-1526. 41. Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J. P.; Terrones, H.; Kordatos, K.; Hsu, W. K.; Hare, J. P.; Townsend, P. D.; Prassides, K.; Cheetham, A. K.; Kroto, H. W.; Walton, D. R. M., Controlled production of aligned-nanotube bundles. Nature 1997, 388, (6637), 52-55. 42. Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E., Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters 1995, 243, (1-2), 49-54. 43. Cheol Jin, L.; Jeunghee, P., Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Applied Physics Letters 2000, 77, (21), 3397-3399. 44. Chris, B.; Wei, Z.; Sungho, J.; Otto, Z., Plasma-induced alignment of carbon nanotubes. Applied Physics Letters 2000, 77, (6), 830-832. 45. Oleg, A. L.; Yoichiro, S., Nanotube self-organization: Formation by step-flow growth. Applied Physics Letters 1999, 74, (2), 194-196. 46. Iijima, S.; Ajayan, P. M.; Ichihashi, T., Growth model for carbon nanotubes. Physical Review Letters 1992, 69, (21), 3100-3103. 47. Sinnott, S. B.; Andrews, R.; Qian, D.; Rao, A. M.; Mao, Z.; Dickey, E. C.; Derbyshire, F., Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters 1999, 315, (1-2), 25-30. 48. Laurent, C.; Flahaut, E.; Peigney, A.; Rousset. A., Metal nanoparticles for the catalytic synthesis of carbon nanotubes. New Journal of Chemistry 1998, 22, (11), 1229-1237. 49. Xu, J. M.; Zhang, X. B.; Li, Y.; Tao, X. Y.; Chen, F.; Li, T.; Bao, Y.; Geise, H. J., Preparation of Mg1-xFexMoO4 catalyst and its application to grow MWNTs with high efficiency. Diamond and Related Materials 2004, 13, (10), 1807-1811. 50. Li, Y.; Zhang, X. B.; Tao, X. Y.; Xu, J. M.; Huang, W. Z.; Luo, J. H.; Luo, Z. Q.; Li, T.; Liu, F.; Bao, Y.; Geise, H. J., Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 2005, 43, (2), 295-301. 51. Jia, Y.; He, L.; Kong, L.; Liu, J.; Guo, Z.; Meng, F.; Luo, T.; Li, M.; Liu, J., Synthesis of close-packed multi-walled carbon nanotube bundles using Mo as catalyst. Carbon 2009, 47, (7), 1652-1658. 52. Shang, Z.; Huang, S.; Xu, X.; Chen, J., Mo/MgO from avalanche-like reduction of MgMoO4 for high efficient growth of multi-walled carbon nanotubes by chemical vapor deposition. Materials Chemistry and Physics 2009, 114, (1), 173-178. 53. Gournis, D.; Karakassides, M. A.; Bakas, T.; Boukos, N.; Petridis, D., Catalytic synthesis of carbon nanotubes on clay minerals. Carbon 2002, 40, (14), 2641-2646. 54. W.-D. Zhang, I. P. T. L., Growth of Carbon Nanotubes on Clay: Unique Nanostructured Filler for High-Performance Polymer Nanocomposites. Advanced Materials 2006, 18, (1), 73-77. 55. Tsoufis, T.; Jankovic, L.; Gournis, D.; Trikalitis, P. N.; Bakas, T., Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures. Materials Science and Engineering: B 2008, 152, (1-3), 44-49. 56. Wang, X. Q.; Li, L.; Chu, N. J.; Liu, Y. P.; Jin, H. X.; Ge, H. L., Lamellar Fe/Al2O3 catalyst for high-yield production of multi-walled carbon nanotubes bundles. Materials Research Bulletin 2009, 44, (2), 422-425. 57. Emmanuel, P. G., Polymer Layered Silicate Nanocomposites. Advanced Materials 1996, 8, (1), 29-35. 58. Shelimov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R. E., Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chemical Physics Letters 1998, 282, (5-6), 429-434. 59. Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H., Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process). The Journal of Physical Chemistry B 2001, 105, (35), 8297-8301. 60. Kyotani, T.; Tsai, L.-f.; Tomita, A., Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film. Chemistry of Materials 1996, 8, (8), 2109-2113. 61. Hamon., M. A.; Chen, J.; Hu, H.; Chen, Y.; Itkis, M. E.; Rao, A. M.; Eklund, P. C.; Haddon, R. C., Dissolution of Single-Walled Carbon Nanotubes. Advanced Materials 1999, 11, (10), 834-840. 62. Clark, L. C.; Lyons, C., Electrode system for continuous monitoring in cardiovascular surgery, Ann. NY Acad Sci., 1962, 102, 29-45. 63. Updike, S. J.; Hicks, G. P., The Enzyme Electrode. Nature 1967, 214, (5092), 986-988. 64. 陳燕惠, “奈米碳管與膠體金於電化學生物感測器上之應用”, 碩士論文, 中興大學化學工程學系, 2006. 65. 許峰碩, “奈米碳黑在免疫層析檢測上的應用”, 碩士論文, 中興大學化學工程學系, 2000. 66. Manowitz, P.; Stoecker, P. W.; Yacynych, A. M., Galactose biosensors using composite polymers to prevent interferences. Biosensors and Bioelectronics 1995, 10, (3-4), 359-370. 67. Kumar, A.; Malhotra, R.; Malhotra, B. D.; Grover, S. K., Co-immobilization of cholesterol oxidase and horseradish peroxidase in a sol-gel film. Analytica Chimica Acta 2000, 414, (1-2), 43-50. 68. Xue, H.; Shen, Z.; Li, Y., Polyaniline-polyisoprene composite film based glucose biosensor with high permselectivity. Synthetic Metals 2001, 124, (2-3), 345-349. 69. Hoshi, T.; Saiki, H.; Anzai, J.-I., Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta 2003, 61, (3), 363-368. 70. Komaba, S.; Seyama, M.; Momma, T.; Osaka, T., Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole. Electrochimica Acta 1997, 42, (3), 383-388. 71. Tsai, Y.-C.; Li, S.-C.; Chen, J.-M., Cast Thin Film Biosensor Design Based on a Nafion Backbone, a Multiwalled Carbon Nanotube Conduit, and a Glucose Oxidase Function. Langmuir 2005, 21, (8), 3653-3658. 72. Davis, J. J.; Coleman, K. S.; Azamian, C. B. R.; Bagshaw, C. B.; Green, M. L. H., Chemical and Biochemical Sensing with Modified Single Walled Carbon Nanotubes. Chemistry - A European Journal 2003, 9, (16), 3732-3739. 73. Storri, S.; Santoni, T.; Minunni, M.; Mascini, M., Surface modifications for the development of piezoimmunosensors. Biosensors and Bioelectronics 1998, 13, (3-4), 347-357. 74. Uttenthaler, E.; Kößlinger, C.; Drost, S., Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor. Biosensors and Bioelectronics 1998, 13, (12), 1279-1286. 75. Harteveld, J. L. N.; Nieuwenhuizen, M. S.; Wils, E. R. J., Detection of Staphylococcal Enterotoxin B employing a piezoelectric crystal immunosensor. Biosensors and Bioelectronics 1997, 12, (7), 661-667. 76. Yokoyama, K.; Ikebukuro, K.; Tamiya, E.; Karube, I.; Ichiki, N.; Arikawa, Y., Highly sensitive quartz crystal immunosensors for multisample detection of herbicides. Analytica Chimica Acta 1995, 304, (2), 139-145. 77. Ianniello, R. M.; Yacynych, A. M., Immobilized enzyme chemically modified electrode as an amperometric sensor. Analytical Chemistry 1981, 53, (13), 2090-2095. 78. Cass, A. E. G.; Davis, G.; Francis, G. D.; Hill, H. A. O.; Aston, W. J.; Higgins, I. J.; Plotkin, E. V.; Scott, L. D. L.; Turner, A. P. F., Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry 1984, 56, (4), 667-671. 79. Narasimhan, K.; Wingard, L. B., Enhanced direct electron transport with glucose oxidase immobilized on (aminophenyl)boronic acid modified glassy carbon electrode. Analytical Chemistry 1986, 58, (14), 2984-2987. 80. Kaku, T.; Karan, H. I.; Okamoto, Y., Amperometric Glucose Sensors Based on Immobilized Glucose Oxidase-Polyquinone System. Analytical Chemistry 1994, 66, (8), 1231-1235. 81. Hale, P. D.; Boguslavsky, L. I.; Inagaki, T.; Karan, H. I.; Lee, H. S.; Skotheim, T. A.; Okamoto, Y., Amperometric glucose biosensors based on redox polymer-mediated electron transfer. Analytical Chemistry 1991, 63, (7), 677-682. 82. Wang, J.; Angnes, L., Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes. Analytical Chemistry 1992, 64, (4), 456-459. 83. Sasso, S. V.; Pierce, R. J.; Walla, R.; Yacynych, A. M., Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Analytical Chemistry 1990, 62, (11), 1111-1117. 84. 董紹俊; 車廣禮; 謝運武, 化學修飾電極 1995. 85. Liu, H.; Deng, J., An amperometric lactate sensor employing tetrathiafulvalene in Nafion film as electron shuttle. Electrochimica Acta 1995, 40, (12), 1845-1849. 86. Furbee, J. W.; Thomas, C. R.; Kelly, R. S.; Malachowski, M. R., Mediated electrochemical reduction of cytochrome c and tyrosinase at perfluorosulfonated ionomer coated electrodes. Analytical Chemistry 1993, 65, (13), 1654-1657. 87. 田福助, 電化學理論與應用. 高立圖書出版公司, 1996. 88. 胡啟璋, 電化學原理與方法. 五南圖書出版股份有限公司, 2002. 89. Wang, J., Analytical electrochemistry. Wiley-VCH, New York 2000. 90. Brad, A. J.; Faulkner, I. R., Electrochemichal method: fundaments and applications. Wiley, New York 2000. 91. http://juang.bst.ntu.edu.tw/BCbasics/Enzyme34.htm 92. http://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics 93. Levenspiel, O., Chemical reaction engineering. John Wiley & Sons 1999. 94. Kamin, R. A.; Wilson, G. S., Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry 1980, 52, (8), 1198-1205. 95. Liu, Y.; Wang, M.; Zhao, F.; Xu, Z.; Dong, S., The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors and Bioelectronics 2005, 21, (6), 984-988. 96. Zhao, S.; Zhang, K.; Bai, Y.; Yang, W.; Sun, C., Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: Direct electron transfer and electrocatalysis. Bioelectrochemistry 2006, 69, (2), 158-163. 97. Luque, G. L.; Ferreyra, N. F.; Rivas, G. A., Glucose Biosensor Based on the Use of a Carbon Nanotube Paste Electrode Modified with Metallic Particles. Microchimica Acta 2006, 152, (3), 277-283. 98. Wang, Y.-T.; Yu, L.; Zhu, Z.-Q.; Zhang, J.; Zhu, J.-Z.; Fan, C.-h., Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor. Sensors and Actuators B: Chemical 2009, 136, (2), 332-337. 98. Wang, S. G.; Zhang, Q.; Wang, R.; Yoon, S. F.; Ahn, J.; Yang, D. J.; Tian, J. Z.; Li, J. Q.; Zhou, Q., Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochemistry Communications 2003, 5, (9), 800-803. 99. Jdanova, A. S.; Poyard, S.; Soldatkin, A. P.; Jaffrezic-Renault, N.; Martelet, C., Conductometric urea sensor. Use of additional membranes for the improvement of its analytical characteristics. Analytica Chimica Acta 1996, 321, (1), 35-40.
摘要: 
本研究使用醇還原法進行製備介金屬合金觸媒,並藉由化學氣相沉積法進行成長單支狀與束狀多壁奈米碳管,以Mg28-Ni68-Mo4合金觸媒成長得到的多壁奈米碳管經過鹽酸酸洗後,再以體積比為2/1的硝酸/過氧化氫混合溶液進行氧化步驟,使奈米碳管管壁上產生羧基(-COOH)的官能基,即可得到親水性的碳管(MWCNT-COOH),而MWCNT-COOH再分別與不同分子量的的聚乙二醇(Polyethylene Glycol,PEG)及氯化甲基苯乙烯(Chloromethyl Styrene,CMS)進行反應,以驗證羧基(-COOH)官能基是否產生於碳管管壁上,進而得到較高親水性的奈米碳管,利用熱重損失分析來進行分析多壁奈米碳管經表面改質後之無機分子與官能基分子之莫耳含量比例的關係,將官能基化改質後的奈米碳管,以FT/IR、EA、FE-SEM與HR-TEM等儀器分析其構造、元素含量與外觀情形,並以TGA與Raman光譜分析其純度、有機與無機物之比例,進而確定奈米碳管及其官能基的結構。此外,將親水性碳管與poly(n,n-dimethylamino propylsilsesquioxane,SXNR)高分子混合於THF溶液中,利用Air Spray方式以氮氣作為夾帶氣體,將混合後的高分子薄膜噴塗於表面聲波(Surface Acoustic Wave,SAW)元件上而形成薄膜狀的的感測膜,以振盪頻率為156 MHz的表面聲波振盪器作為氣體感測器,進行吸附乙醇氣體分子的感測,氣體感測器摻混MWCNT-COOH的高分子膜可得到較佳的應答頻率及靈敏度,此特性將有助於SAW氣體感測器之應用。

此外,也驗證使用插層黏土進行成長奈米碳管,以及Nafion-CNT/Clay-Au與Nafion-CNT/Clay-Au-Glucose oxidase (GOD)薄膜修飾玻璃碳電極分別偵測過氧化氫(H2O2)與葡萄糖(Glucose)之電化學分析。以鎳離子插層黏土進行成長奈米碳管,可發現是由片狀黏土表面上成長出奈米碳管,經由FE-SEM的影像觀察奈米碳管的外觀與結構、X光繞射(XRD)分析碳管結構與黏土層間距之關係及利用FTIR與TGA鑑定奈米碳管的界面活性劑與碳管在層狀黏土上的重量比例等分析結果,經過成長奈米碳管之後的片狀黏土會形成脫層的現象。而在生物感測器的應用部分,將葡萄糖氧化酵素(GOD)、膠體金與以Ni+/clay觸媒成長之奈米碳管(CNT/Clay)摻混於稀釋之全氟磺酸聚合物(Nafion)高分子水溶液後,將其混合溶液滴於玻璃碳電極(Glassy Carbon Electrode,GCE)上形成一層修飾薄膜後,再分別進行偵測H2O2與Glucose。使用NCCA薄膜修飾GCE偵測過氧化氫濃度,其偵測電流的線性範圍及靈敏度分別為5.0 × 10–5 M與2800 nA mM–1;使用NCCAG薄膜修飾GCE偵測葡萄糖濃度,添加2.0 mg/ml的GOD時,其靈敏度為620 nA mM-1,及電流應答線性範圍為25~1850μM,而當GOD添加量較大時,則可得到較小的線性範圍與較高的靈敏度,加入10.0 mg/ml的GOD可得到最大靈敏度為2032 nA mM-1;CNT/Clay/Nafion為具有高靈敏度的傳導媒介,可應用於生物感測器的領域上。

In this study, intermetallic alloy catalysts had been prepared by the polyol method, and used for the growth of the individual- or bundle-shaped multi-walled carbon nanotubes (MWCNTs) by thermal chemical vapor deposition method. The purified MWCNTs catalyzed by Mg28-Ni68-Mo4 alloy catalyst were oxidized with the nitric acid/hydrogen peroxide solution (volume ratio = 2/1) to generate carboxylic acid groups. The oxidized MWCNTs (MWCNT-COOH) were further modified with different molecular weights of polyethylene glycols and chloromethyl styrene, respectively, to verify carboxylic acid groups and achieve higher hydrophobic property. Contents of organic functional groups grafted on MWCNTs were estimated with thermogravimetric analysis experiments. Furthermore, the analysis of the structure and the functional groups of the modified CNTs are obtained by FT/IR, EA, FE-SEM, HR-TEM, TGA and Raman microscopy. In addition, the MWCNT-COOH and poly(n,n-dimethylamino propylsilsesquioxane) (SXNR) were mixed in the THF solvent, and sprayed onto the surface of SAW crystal gas sensor. The MWCNT-COOH is employed to the 156 MHz surface acoustic wave (SAW) quartz crystal sensor for the adsorption of ethanol vapor. The SAW quartz crystal gas sensor coated with the MWCNT-COOH/SXNR was exhibited a high response for ethanol vapor efficiently.

Besides, we demonstrate the synthesis of carbon nanotubes (CNTs) on clay minerals, and the development of biosensors based on Nafion-CNT/Clay-Au and Nafion-CNT/Clay-Au-Glucose oxidase (GOD) composite films for the detection of hydrogen peroxide (H2O2) and glucose, respectively. The CNTs are synthesized on nickel cation exchanged clay mineral platelets. From field-emission scanning electron microscope images, X-ray diffraction, Fourier transfer infrared and thermogravimetric analysis results, the clay layers are exfoliated and delaminated after the growth of CNTs on them. The mixed hybrid film of Nafion, CNT/Clay, HAuCl4 and GOD is coated on the glassy carbon (GC) electrode to detect H2O2 or glucose. This film exhibits a detection limit of 5.0 × 10-5 M for H2O2 with a sensitivity of 2800 nA mM-1. In addition, the amperometric response for glucose containing 2.0 mg mL-1 GOD in the Nafion-CNT/Clay-Au-GOD modified GC electrode exhibits a sensitivity of 620 nA mM-1 with a linear range up to 1850 μM. A higher sensitivity and shorter response time are observed with increasing GOD content in the composite matrix film. Besides, the highest sensitivity of 2032 nA mM-1 is obtained with the addition of the 10.0 mg mL-1 GOD in the composite film. Consequently, the CNT/Clay/Nafion medium can probably be a useful electrode for the development of sensors due to its high sensitivity and applicability.
URI: http://hdl.handle.net/11455/3733
其他識別: U0005-1207200915571300
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.